Page 1 of 13

9231_w22_qp_21

 	• • • • • • • • • • • • • • • • • • • •
 	• • • • • • • • • • • • • • • • • • • •
 	• • • • • • • • • • • • • • • • • • • •
 	• • • • • • • • • • • • • • • • • • • •
	•••••
 	•••••
	•••••
	• • • • • • • • • • • • • • • • • • • •
100	

2 (a) Show that the system of equations

x - y + 2z = 4,
x - y - 3z = a,
x - y + 7z = 13,

	x - y - 3z = a	
	x - y + 7z = 13,	
	where a is a constant, does not have a unique solution.	
		• • • • • • • • • • • • • • • • • • • •
_		
•		
		•••••
•		• • • • • • • • •
	Given that $a = -5$, show that the system of equations in part (a) is consistent. Intersity of geometrically	
	situation geometrically.	
		•••••
		• • • • • • • • • • • • • • • • • • • •
•		•••••
		• • • • • • • • • • • • • • • • • • • •
•		• • • • • • • • • • • • • • • • • • • •
(Given instead that $a \neq -5$, show that the system of equations in part (a) is inconsistent.	Interp
	this situation geometrically.	-
Ì		
		• • • • • • • • • • • • • • • • • • • •

3 The curve C has parametric equations

	$x = e^t - \frac{1}{3}t^3,$	$y = 4e^{\frac{1}{2}t}(t-2),$	for $0 \le t \le 2$.	
Find, in terms of e, the	length of <i>C</i> .			[6]
	•••••			

	$\cosh^2 x - \sinh^2 x = 1.$	[3
	Show that $\frac{d}{dx}(\tanh x) = \operatorname{sech} x$.	
)	Show that $\frac{d}{dx} (\tan^{-1} (\sinh x)) = \operatorname{sech} x$.	[
)		[:
)		
))		
))		[3
)		
)		
)		

(c)	Sketch the graph of $y = \operatorname{sech} x$, stating the equation of the asymptote.	[2]
(d)	By considering a suitable set of <i>n</i> rectangles of unit width, use your sketch to show that	
	$\sum_{n=0}^{\infty} \operatorname{sech} r < \tan^{-1}(\sinh n).$	[3]
	r=1	[2]
(a)	Hence state an upper bound, in terms of π , for $\sum_{n=0}^{\infty} \operatorname{sech} r$.	Г17
(6)	Thence state an upper bound, in terms of n , for $\sum_{r=1}^{r}$	[1]
	-5°	

5 Find the particular solution of the differential equation

$$2\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 4x^2 + 3x + 3,$$

given that, when $x = 0$, $y = \frac{dy}{dx} = 0$.	[10]
$\mathrm{d}x$	
7°°\	

Page 7 of 13	9231_w22_qp_21

6 The matrix **A** is given by

$$\mathbf{A} = \begin{pmatrix} 2 & -3 & -7 \\ 0 & 5 & 7 \\ 0 & 0 & -2 \end{pmatrix}.$$

Find a matrix P and a	a diagonai mati	ix D such tha	tra – Ibi	•	
	•••••		•••••	••••••	•••••
	•••••		•••••		
	•••••		•••••	•••••	•••••
			•••••		
	•••••		•	••••••	
			•••••		
			•••••		
	•••••				•••••
			•••••		
	•••••		•	••••••	•••••
					•••••
		100			

(b) Use the characteristic equation of A to show that

$$\mathbf{A}^4 = a\mathbf{A}^2 + b\mathbf{I},$$

where a and b are integers to be determined.	[4]
	•••••
	•••••
	••••••
	•••••
	•••••
	•••••
	•••••
	••••••
	•••••

(a)	State the sum of the series $1 + w + w^2 + w^3 + + w^{n-1}$, for $w \ne 1$.	[1
(b)	Show that $(1 + i \tan \theta)^k = \sec^k \theta (\cos k\theta + i \sin k\theta)$, where θ is not an integer multiple of $\frac{1}{2}\pi$.	[<u>/</u>
(c)	By considering $\sum_{k=0}^{n-1} (1 + i \tan \theta)^k$, show that $\sum_{k=0}^{n-1} \sec^k \theta \sin k\theta = \cot \theta (1 - \sec^n \theta \cos n\theta),$	
	provided θ is not an integer multiple of $\frac{1}{2}\pi$.	[

	Po	ige 11 of 13	9231_w22_qp_2
	6m-1		
(d)	Hence find $\sum_{k=0}^{6m-1} 2^k \sin(\frac{1}{3}k\pi)$ in terms	of m.	[2]
	k = 0		

8 (a)	Use the	substitution	u = 1	-($\theta - 1$)2	to	find

(a)	Use the substitution $u = 1 - (\theta - 1)$ to find $\int \frac{\theta - 1}{\sqrt{1 - (\theta - 1)^2}} d\theta.$ [3]								
(b)	Find the solution of the differential equation								
(6)	$\theta \frac{\mathrm{d}y}{\mathrm{d}\theta} - y = \theta^2 \sin^{-1}(\theta - 1),$								
	where $0 < \theta < 2$, given that $y = 1$ when $\theta = 1$. Give your answer in the form $y = f(\theta)$. [11]								

Page 13 of 13	9231	_w22_	_qp_21
		•••••	
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
		• • • • • • • • • • • • • • • • • • • •	
		••••••	•••••
		• • • • • • • • • • • • • • • • • • • •	•••••
		• • • • • • • • • • • • • • • • • • • •	
		•••••	•••••