| | | •• | |-----|--|-----| (b) | Express $\frac{1}{r(r+2)}$ in partial fractions and hence find $\sum_{r=1}^{n} \frac{1}{r(r+2)}$ in terms of n . | | | (~) | r(r+2) $r(r+2)$ | | | | | •• | | | | •• | | | | • • | | | | | | | | • • | Page 2 of 15 | 9231_w22_qp_1 | |-----|--|---------------| (a) | Deduce the value of $\sum_{i=1}^{\infty} 1$ | F17 | | (c) | Deduce the value of $\sum_{r=1}^{\infty} \frac{1}{r(r+2)}$. | [1] | 2 The equation $x^4 + 3x^2 + 2x + 6 = 0$ has roots α , β , γ , δ . | . 11 | nd a qu | 0 | quain |)11 W11 | 1030 1 | .0013 | arc | α^2 | β^2 | γ^2 | δ^2 | iiid 5 | iaic i | | urue (| α^2 | β^2 | γ^2 | |---------|---------|-------|-------|-----------|--------|---|---------------|------------|-------------|-------------|---|---|---|-----------------|---|---|---|------------| • • • • | ••••• | | ••••• | | ••••• | ••••• | | ••••• | •••• | ••••• | | ••••• | • • • • • • • • | • • • • • • • • | ••••• | • • • • • • • • • | • | | | •••• | | ••••• | | | ••••• | | ••••• | ••••• | ••••• | | ••••• | ••••• | • | | ••••• | • | ••••• | •••• | | | | | | ••••• | | ••••• | •••• | | | ••••• | | | ••••• | | ••••• | | | •••• | | | | | | | | | •••• | •••• | | | ••••• | , | ••••• | ••••• | • • • • • • • | ••••• | ••••• | | • | ••••• | • | | ••••• | • | •••••• | | | •••• | | | | | | ••••• | | | ••••• | | | ••••• | • • • • • • • • | | | | | | | | | | | | | | | | •••• | •••• | | | | | | ••••• | | | ••••• | | • | ••••• | | | ••••• | | | | | • • • • | | | | , | ••••• | | ••••• | ••••• | ••••• | | ••••• | | • | | ••••• | | ••••• | •••• | | | ••••• | | | ••••• | | ••••• | ••••• | ••••• | | • | • • • • • • • • | | ••••• | | | | | • • • • | | | | | | | | ••••• | ••••• | , | ••••• | | ••••• | , | ••••• | • | | | • • • • • • | • • • • • • | • • • • • • • | ••••• | • • • • • • • | • • • • • • | • | • | | | | Find the value of $\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4} + \frac{1}{\delta^4}$. | | |--|---| | | | | | ••••• | | | | | | | | | ••••• | | | | | | | | | • | | | | | | | | | ••••• | | | | | | | | | ••••• | | | | | | ••••• | | | | | | | | | | | | | | Find the value of $\frac{1}{\alpha^4} + \frac{1}{\beta^4} + \frac{1}{\gamma^4} + \frac{1}{\delta^4}$. | | | | | | | | | | ••••• | | | | | | | | | • | | | | | | | | | ••••• | The matrix **M** is given by $\mathbf{M} = \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix}$, where k is a constant and $k \neq 0$ or 1. 3 (a) The matrix M represents a sequence of two geometrical transformations. State the type of each transformation, and make clear the order in which they are applied. [2] **(b)** Write M^{-1} as the product of two matrices, neither of which is **I**. [2] (c) Show that the invariant points of the transformation represented by **M** lie on the line $y = \frac{k^2}{1-k}x$. | | ruge | 200115 | 9231_w22_qp_1 | |-------|---|---------------------------------|---------------------------------------| • • • | •• | | | | | | | | | | | | | | | ••• | The triangle ABC in the x - y plane is tran | sformed by M onto triang | gle <i>DEF</i> . | |] | Find the value of k for which the area of | triangle <i>DEF</i> is equal to | the area of triangle <i>ABC</i> . [2] | • | | | | | | | | | | | | | | The function f is such that f''(x) = f(x). Prove by mathematical induction that, for every positive integer n, | $\frac{d^{2n-1}}{dx^{2n-1}}(xf(x)) = xf'(x) + (2n-1)f(x).$ | [7] | |--|-----| | | | | | | |
 |
 | |------|------| | | | | | | | | | | | | | |
 | |
 | | | | | |
 | |-------|-------|-------|-------|---|-------|---|-------|-------|--------|-------|---|-----------| | | | | |
 | |
 | | | | | |
 | | | | | |
 | |
 | | | | | |
 | | | | | |
 | |
 | | | | | |
 | | | | | |
 | |
 | | | | | |
 | | | | | |
 | |
 | | | | | |
 | | | | | |
 | |
 | | | | | ••••• |
 | | | | | |
 | |
 | | | | | |
 | | | | | |
 | |
 | | | | | |
 | | | ••••• | ••••• | |
••••• | ••••• |
• | | ••••• | ••••• | | ••••• |
••••• | | | | | |
 | |
 | | | | | |
 | | | ••••• | | |
• | ••••• |
• | ••••• | | ••••• | ••••• | ••••• |
 | | ••••• | | | ••••• |
 | |
 | | | | | • |
 | | | ••••• | ••••• | ••••• |
• | ••••• |
••••• | ••••• | ••••• | ••••• | ••••• | ••••• |
 | | ••••• | | | |
 | |
 | | | | | |
 | | | ••••• | | |
••••• | ••••• |
 | ••••• | ••••• | ••••• | | |
 | | ••••• | | ••••• | ••••• |
 | |
••••• | ••••• | | | ••••• | ••••• |
 | | | ••••• | ••••• | |
•••••• | ••••• |
 | | ••••• | | | ••••• |
••••• | | | | | |
 | |
 | | | •••••• | | |
 |
 |
 |
 | ••••• |
• |
 |
• | |------|------|------|-------|---|------|---| | | | | | | | | | | | | | | | | |
 |
 |
 | |
 |
 |
 | | | | | | | | | |
 |
 |
 | |
 |
 |
 | |
 |
 | |------|------| | | | | | | | |
 | |-------|---| | | | | | | | | | | ••••• | • | | | | | | | | | | | Page 8 of 15 | 9231_w22_qp_12 | |--------------|----------------| |
 | | | | | | | | |
 | | |
 | | | | | | Z & > 1 | | - 5 The curve C has polar equation $r = a \sec^2 \theta$, where a is a positive constant and $0 \le \theta \le \frac{1}{4}\pi$. - (a) Sketch C, stating the polar coordinates of the point of intersection of C with the initial line and also with the half-line $\theta = \frac{1}{4}\pi$. | | | • • • • • | |-----|--|-------------| | (b) | Find the maximum distance of a point of C from the initial line. | [2 | | | | • • • • • • | | | | | | | | | | (c) | Find the area of the region enclosed by C , the initial line and the half-line $\theta = \frac{1}{4}\pi$. | [4] | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | First Start First | • • • • • • | | | | • • • • • | | 1110 | e point P on l_1 and the point Q on l_2 are such that PQ is perpendicular to both l_1 and l_2 . | | | | | |------|---|-------|--|--|--| | (a) | Find the length PQ . | ••••• | | | | | | | ••••• | | | | | | | ••••• | ••••• | ••••• | | | | | | | | | | | | | | ••••• | ••••• | The plane Π_1 contains PQ and l_1 . The plane Π_2 contains PQ and l_2 . (b) (i) Write down an equation of Π_1 , giving your answer in the form $\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$. [1] Find an equation of Π_2 , giving your answer in the form ax + by + cz = d. [4] (c) Find the acute angle between $\boldsymbol{\varPi}_1$ and $\boldsymbol{\varPi}_2.$ [5] | (a) | Find the equations of the asymptotes of <i>C</i> . | | |------------|---|--| <i>a</i> > | | | | (b) | Find the exact coordinates of the stationary points on <i>C</i> . | [3] (c) Sketch C, stating the coordinates of any intersections with the axes. (d) Sketch the curve with equation $y = \left| \frac{x^2 - x}{x+1} \right|$ and find in exact form the set of values of x for which $\left| \frac{x^2 - x}{x+1} \right| < 6$. |
 | |------| |
 | |
 | | | |
 | |
 | | | |
 | |
 | | | |
 | | | | | |
 | | | | | | | |
 | |
 | | | |
 | |
 | |
 | | | | | | | | | | | Page 15 of 15 9231_w22_qp_12