The cubic equation $x^3 + bx^2 + d = 0$ has roots α , β , γ , where $\alpha = \beta$ and $d \neq 0$.

(a) Show that 4	$b^3 + 27d = 0.$
-----------------	------------------

[5]

(b)	Given that $2\alpha^2 + \gamma^2 = 3b$, find the values of b and d.	[3
		••••

			•	ge 2 01				231_W22	
	•••••				•••••		•••••		
									•••••
Prov	e hy mathen	natical induction	on that for a	ıll nositive	integers <i>i</i>	$7^{2n} + 97^n$	-50 is d	ivisihle hv	48
101	e oy mamen	nation inducti	011 11141, 101 4	ii positive	micegers n	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20 15 4	visioie by	10.
									•••••
			•••••	•••••	,	•••••		,	••••••
									•••••
•••••	•••••		•••••	•••••		•••••	•••••		• • • • • • • • • • • • • • • • • • • •
									•••••
•••••									•••••
••••••									•••••
				•••••		•••••	•••••		
• • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••		
									•••••

3 (a) By considering $(2r+1)^3 - (2r-1)^3$, use the method of differences to prove that

\sum_{r}	$\sum_{n=1}^{\infty} r^2 = \frac{1}{6}n(n+1)(2n+1).$	[5]
	00	

Let $S_n = 1^2 + 3 \times 2^2 + 3^2 + 3 \times 4^2 + 5^2 + 3 \times 6^2 + \dots + (2 + (-1)^n)n^2$.

Show that $S_{2n} = \frac{1}{3}n(2n+1)(an+b)$, where a and b are integers to be determined.			
C			
State the value of $\lim_{n \to \infty} \frac{S_{2n}}{n^3}$.			
$n \to \infty$ n^3			
	(00)		

]	Find a Cartesian equation of Π , giving your answer in the form $ax + by + cz = d$.
•	
•	
•	
•	
•	
•	

Page 6 of 13

The	The line <i>l</i> passes through the point <i>P</i> with position vector $2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ and is parallel to the vector $\mathbf{j} + \mathbf{k}$.					
(b)	Find the acute angle between l and Π .	[3]				
(c)	Find the position vector of the foot of the perpendicular from P to Π .	[4]				

- 5 The matrix **M** is given by $\mathbf{M} = \begin{pmatrix} \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$, where k is a constant.
 - (a) The matrix \mathbf{M} represents a sequence of two geometrical transformations.

State the type of each transformation, and make clear the order in which they are applied.	[2]

(b) The triangle ABC in the x-y plane is transformed by \mathbf{M} onto triangle DEF.

Find, in terms of k , the single matrix which transforms triangle DEF onto triangle ABC .	[2
	•••••

Page 8 of 13

for which the transformation represented by M has no invariant li

[3]

6 (a) Show that the curve with Cartesian equation

$$(x^2 + y^2)^2 = 36(x^2 - y^2)$$

has polar equation $r^2 = 36\cos 2\theta$.	[3]
	••••
	••••
	••••
	· • • •

The curve C has polar equation $r^2 = 36\cos 2\theta$, for $-\frac{1}{4}\pi \le \theta \le \frac{1}{4}\pi$.

(b) Sketch C and state the maximum distance of a point on C from the pole.

Page 10 of 13

	Find the area of the region enclosed by C.
	Find the maximum distance of a point on C from the initial line, giving the answer in exect for
'	Find the maximum distance of a point on C from the initial line, giving the answer in exact for
	2 45 41 43 43

(a)	Find the equations of the asymptotes of <i>C</i> .	
(b)	Find the coordinates of the stationary points on <i>C</i> .	

(c) Sketch *C*. [3]

(d) Sketch the curve with equation $y = \left| \frac{5x^2}{5x - 2} \right|$ and find in exact form the set of values of x for which $\left| \frac{5x^2}{5x - 2} \right| < 2$.

Page 13 of 13	9231_w22_qp_1
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	