1	The number, x , of pine trees was counted in each of 40 randomly chosen regions of equal size in
	country A. The number, y, of pine trees was counted in each of 60 randomly chosen regions of the same
	equal size in country B. The results are summarised as follows.

$$\Sigma x = 752$$
 $\Sigma x^2 = 14320$ $\Sigma y = 1548$ $\Sigma y^2 = 40200$

Find a 95% confidence interval for the difference between the mean number of pine trees in region this size in countries A and B .	ns of [7]

2 It is claimed that the heights of a particular age group of boys follow a normal distribution with mean 125 cm and standard deviation 12 cm. Observations for a randomly chosen group of 60 boys in this age group are summarised in the following table. The table also gives the expected frequencies, correct to 2 decimal places, based on the normal distribution with mean 125 cm and standard deviation 12 cm.

Height, x cm	x < 100	$100 \leqslant x < 110$	$110 \leqslant x < 120$	$120 \leqslant x < 130$	$130 \leqslant x < 140$	<i>x</i> ≥ 140
Observed frequency	0	3	15	23	11	8
Expected frequency	1.12	5.22	13.97	19.38	13.97	6.34

••••••				•••••	••••••••	
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••			•••••
						•••••
•••••						
	•••••		• • • • • • • • • • • • • • • • • • • •	•••••		
	f fit test, at	the 5% sign	ificance leve	l, to determi	ine whethe	r the cla
Carry out a goodness of supported by the data.	f fit test, at	the 5% sign	ificance leve	el, to determi	ine whethe	r the cla
	f fit test, at	the 5% sign	ificance leve	l, to determi	ine whethe	r the cla
	f fit test, at	the 5% sign	ificance leve	l, to determi	ine whethe	r the cla
	f fit test, at	the 5% sign	ificance leve	el, to determi	ine whethe	r the cla
	f fit test, at	the 5% sign	ificance leve	el, to determi	ine whethe	r the cla
	f fit test, at	the 5% sign	ificance leve	el, to determi	ine whethe	r the cla
	f fit test, at	the 5% sign	ificance leve	l, to determi	ine whethe	r the cla
	f fit test, at	the 5% sign	ificance leve	l, to determi	ine whethe	r the cla
	f fit test, at	the 5% sign	ificance leve	el, to determi	ine whethe	r the cla
	f fit test, at	the 5% sign	ificance leve	el, to determi	ine whethe	r the cla
	f fit test, at	the 5% sign	ificance leve	el, to determi	ine whethe	r the cla
	f fit test, at	the 5% sign	ificance leve	el, to determi	ine whethe	r the cla
	f fit test, at	the 5% sign	ificance leve	el, to determi	ine whethe	r the cla
	f fit test, at	the 5% sign	ificance leve	l, to determi	ine whethe	r the cla
	f fit test, at	the 5% sign	ificance leve	l, to determi	ine whethe	r the cla
	f fit test, at	the 5% sign	ificance leve	l, to determi	ine whethe	r the cla
	f fit test, at	the 5% sign	ificance leve	el, to determi	ine whethe	r the cla

 $\mathbf{3}$ The continuous random variable X has probability density function f given by

$$f(x) = \begin{cases} a + \frac{1}{5}x & 0 \le x < 1, \\ 2a - \frac{1}{5}x & 1 \le x \le 2, \\ 0 & \text{otherwise,} \end{cases}$$

where a is a constant.

Find $\mathrm{E}(X^2)$.				
Find E(X ²).		 	 	
Find E(X ²).		 	 	
Find E(X ²).		 	 	
Find E(X ²).		 	 	
Find E(X ²).		 	 	
Find E(X ²).		 	 	
Find $\mathrm{E}(X^2)$.				
Find $E(X^2)$.		 	 	
Find E(X ²).		 •••••	 	
Find E(X ²).		 	 	
Find E(X ²).		 	 	
	2			
	Find $E(X^2)$.			
	Find $E(X^2)$.	 	 	
	Find E(X ²).	 	 	
	Find E(X ²).			
	Find E(X ²).			
	Find E(X ²).			
	Find E(X ²).			
	Find E(X ²).			
	Find E(X ²).			
	Find E(X ²).			
	Find E(X ²).			

...../00\...

Applicants for a portionlar college take a symitten test when they attend for interview. There are two
Applicants for a particular college take a written test when they attend for interview. There are two
different written tests, A and B , and each applicant takes one or the other. The interviewer wants
to determine whether the medians of the distribution of marks obtained in the two tests are equal.
The marks obtained by a random sample of 8 applicants who took test A and a random sample of
8 applicants who took test <i>B</i> are as follows.

Test A	46	32	29	12	33	18	25	40
Test B	36	28	49	37	48	35	41	31

Carry out a Wilcoxon difference in the popu	ılation median ma	arks obtained	in the two test	S.	
	,				
					•••••
		,			
•••••	,				
				•••••	
				•••••	
				•••••	• • • • • • • • • • • • • • • • • • • •

The interviewer considers using the given information to carry out a paired sample t-test to determine whether there is a difference in the population means for the two tests.

(a)	Find the value of k .	[1]
a >		
(b)	Find the probability generating function $G_X(t)$ of X .	[2]
	random variable <i>Y</i> has probability generating function $G_Y(t) = \frac{1}{4} + \frac{1}{2}t + \frac{1}{4}t^2$.	
The	random variable Z is the sum of X and Y .	
(c)	Assuming that X and Y are independent, find the probability generating function $G_Z(t)$ of Z polynomial in t .	as a [3]

/00\

					Page 10	0 of 11			9231_	w21_qp_4	2
6						cular type of A and reco				He chooses a	a
	2.1	1.8	0.9	3.0	2.4	2.6	1.8	2.2	1.9	2.5	
	The scient summary				-	f 12 fish o	f this type	e from lak	E = B, but E	he only has	a
				$\sum y =$	24.48	$\sum y^2 = 5$	3.75				
		mass of fi	sh of this							s greater that need to make [10	e