| One end of a light elastic string, of natural length a and modulus of elasticity $3mg$, is attached to point O on a smooth horizontal plane. A particle P of mass m is attached to the other end of the and moves in a horizontal circle with centre O . The speed of P is $\sqrt{\frac{4}{3}ga}$. | | | | |--|----------|----|--| | Find the extension of the string. | | [4 | الاززالا | | | | | /00 | | | 1 A particle *P* of mass *m* kg moves along a horizontal straight line with acceleration $a \,\text{ms}^{-2}$ given by $a = \frac{v(1-2t^2)}{t},$ where $v \, \text{m s}^{-1}$ is the velocity of P at time $t \, \text{s}$. | Find an expres | | | | | | | |--|----------------------|-----------------|------------------|--|--------------|------------| Given that $a = $ on P at time t . | 5 when t = 1, | find an express | ion, in terms of | f m and t , for the | he horizonta | l force a | | Given that $a =$ on P at time t . | 5 when t = 1, | find an express | ion, in terms of | f m and t , for the | he horizonta | ll force a | | Given that $a =$ on P at time t . | 5 when t = 1, | find an express | ion, in terms of | f m and t , for the | he horizonta | ll force a | | Given that $a = $ on P at time t . | 5 when t = 1, | find an express | ion, in terms of | f m and t , for the form t | he horizonta | ıl force a | | Given that $a =$ on P at time t . | t = 1, | find an express | ion, in terms of | f m and t , for the form t , for the form t , | he horizonta | ll force a | | Given that $a = $ on P at time t . | 5 when t = 1, | find an express | ion, in terms of | f m and t , for the form t , for the following t , | he horizonta | ll force a | | Given that $a =$ on P at time t . | t = 1, | find an express | ion, in terms of | f <i>m</i> and <i>t</i> , for the | he horizonta | ll force a | | Given that $a =$ on P at time t . | t = 1, | find an express | ion, in terms of | f m and t, for the | he horizonta | ll force a | | Given that $a =$ on P at time t . | t = 5 when $t = 1$, | find an express | ion, in terms of | f m and t, for the | he horizonta | ll force a | | Given that $a =$ on P at time t . | t = 5 when $t = 1$, | find an express | ion, in terms of | f m and t, for the | he horizonta | al force a | | Given that $a = $ on P at time t . | t = 5 when $t = 1$, | find an express | ion, in terms of | f m and t, for the | he horizonta | ll force a | | Given that $a =$ on P at time t . | t = 5 when $t = 1$, | find an express | ion, in terms of | f m and t, for the | he horizonta | ll force a | | Given that $a = $ on P at time t . | t = 5 when $t = 1$, | find an express | ion, in terms of | f m and t, for the | he horizonta | ll force a | | Given that $a = $ on P at time t . | t = 5 when $t = 1$, | find an express | ion, in terms of | f m and t, for the | he horizonta | ll force a | | Given that $a =$ on P at time t . | 5 when t = 1, | find an express | ion, in terms of | f m and t, for the | he horizonta | ll force a | | Given that $a = $ on P at time t . | t = 5 when $t = 1$, | find an express | ion, in terms of | f m and t, for the | he horizonta | ll force a | | Given that $a = $ on P at time t . | t = 5 when $t = 1$, | find an express | ion, in terms of | f m and t, for the | he horizonta | ll force a | | Given that $a =$ on P at time t . | t = 5 when $t = 1$, | find an express | ion, in terms of | f m and t, for the | he horizonta | ll force a | | attached to a fixed point O. The or hangs in equilibrium vertically be | length a and modulus of elasticity $12mg$. One end of the string is ther end of the string is attached to a particle of mass m . The particle elow O . The particle is pulled vertically down and released from resequal to e , where $e > \frac{1}{3}a$. In the subsequent motion the particle has a distance $\frac{1}{3}a$. | |--|---| | Find e in terms of a . | [6 | 4 A uniform lamina AECF is formed by removing two identical triangles BCE and CDF from a square lamina ABCD. The square has side 3a and EB = DF = h (see diagram). | (a) | Find the distance of the centre of mass of the lamina $AECF$ from AD and from AB , giving your answers in terms of a and h . [5] | |-----|--| The lamina AECF is placed vertically on its edge AE on a horizontal plane. **(b)** Find, in terms of a, the set of values of h for which the lamina remains in equilibrium. [3] 00 | perpendicular to its direction | of motion at A . | | r project of <i>P</i> at | | |--------------------------------|--------------------|-------|--------------------------|--| | Find the value of u . | | | | | | | |
 | | | | | |
, | · • • • • • | | | | |
 | | | | | |
 | · • • • • | | | | |
 | · • • • • | | | | |
 | | | | | |
 | · • • • • • | | | | |
 | | | | | |
 | | | | | |
 | · • • • • | | | | |
 | · • • • • • | | | | |
 | | | | | |
 | , | | | | |
 | | | | | | | | | A particle P, of mass m, is attached to one end of a light inextensible string of length a. The other end of the string is attached to a fixed point O. The particle P moves in complete vertical circles about O with the string taut. The points A and B are on the path of P with AB a diameter of the circle. OA makes an angle θ with the downward vertical through O and OB makes an angle θ with the upward vertical through O. The speed of P when it is at A is $\sqrt{5ag}$. The ratio of the tension in the string when P is at A to the tension in the string when P is at B is 9:5. | a) | Find the value of $\cos \theta$. | | [6] | |----|-----------------------------------|---------|-----| - Z & S | | | | r, the greatest speed of P during its motion. | | |--------|---|--------| •••••• | | •••••• | •••••• | | •••••• | ••••• | The smooth vertical walls AB and CB are at right angles to each other. A particle P is moving with speed u on a smooth horizontal floor and strikes the wall CB at an angle α . It rebounds at an angle β to the wall CB. The particle then strikes the wall AB and rebounds at an angle γ to that wall (see diagram). The coefficient of restitution between each wall and P is e. | a) | Show that $\tan \beta = e \tan \alpha$. | [3 | |----|---|-------------|) | Express γ in terms of α and explain what this result means about the final direction of the second sec | notion of A | /.0.0.\