1 It is given that $y = \sinh(x^2) + \cosh(x^2)$	²).
--	-----------------

1)	Use standard results from the list of formulae (MF19) to find the Maclaurin's series for y is of x up to and including the term in x^4 .	in tern [2
		•••••
		•••••
	$ \cdot$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot	
))	Deduce the value of $\frac{d^4y}{dx^4}$ when $x = 0$.	[
		•••••
e)	Use your answer to part (a) to find an approximation to $\int_{-\infty}^{\infty} v dx$, giving your answer as a	ration
:)	Use your answer to part (a) to find an approximation to $\int_0^{\frac{1}{2}} y dx$, giving your answer as a fraction in its lowest terms.	ration
e)	Use your answer to part (a) to find an approximation to $\int_0^{\frac{1}{2}} y dx$, giving your answer as a fraction in its lowest terms.	ration [
e)	Use your answer to part (a) to find an approximation to $\int_0^{\frac{1}{2}} y dx$, giving your answer as a fraction in its lowest terms.	ration [
e)	Use your answer to part (a) to find an approximation to $\int_0^{\frac{1}{2}} y dx$, giving your answer as a fraction in its lowest terms.	ration [
)	Use your answer to part (a) to find an approximation to $\int_0^{\frac{1}{2}} y dx$, giving your answer as a fraction in its lowest terms.	ration
e)	Use your answer to part (a) to find an approximation to $\int_0^{\frac{1}{2}} y dx$, giving your answer as a fraction in its lowest terms.	ration [
	Use your answer to part (a) to find an approximation to $\int_0^{\frac{1}{2}} y dx$, giving your answer as a fraction in its lowest terms.	ration
	Use your answer to part (a) to find an approximation to $\int_0^{\frac{1}{2}} y dx$, giving your answer as a fraction in its lowest terms.	ration
)	Use your answer to part (a) to find an approximation to $\int_0^{\frac{1}{2}} y dx$, giving your answer as a fraction in its lowest terms.	ration
	Use your answer to part (a) to find an approximation to $\int_0^{\frac{1}{2}} y dx$, giving your answer as a fraction in its lowest terms.	ration

2 Find the solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{4x^3y}{x^4 + 5} = 6x$$

for which $y = 1$ when $x = 1$. Give your answer in the form $y = f(x)$.	[7]
	••••

3

The diagram shows the curve with equation $y = 1 - x^2$ for $0 \le x \le 1$, together with a set of *n* rectangles of width $\frac{1}{n}$.

(a) By considering the sum of the areas of the rectangles, show that

$\int_0^1 (1-x^2) \mathrm{d}x < \frac{4x}{2}$	$\frac{n^2+3n-1}{6n^2}.$	[4]
 200	2	

•••••		• • • • • • • • • • • • • • • • • • • •	•••••
	/.0.0.\		

$\cos^4\theta - 8\cos^2\theta + 1.$	
	•••••
	•••••
	•••••
	•••••
	•••••

(c) Use the results of parts (a) and (b) to express each real root of the equation

$$8x^9 - 8x^7 + x^5 - 8x^4 + 8x^2 - 1 = 0$$

in the form $\cos k\pi$, where k is a rational number.	[4]

5 The curve C has parametric equations

$$x = 3t + 2t^{-1} + at^3$$
, $y = 4t - \frac{3}{2}t^{-1} + bt^3$, for $1 \le t \le 2$,

where a and b are constants.

(a) It is given that $a = \frac{2}{3}$ and $b = -\frac{1}{2}$.

Show that $\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = \frac{25}{4}(t^2 + t^{-2})^2$ and find the exact length of C . [6]
63

Find the value of $\frac{d^2y}{dx^2}$ when $t = 1$.	[4

6 The matrix **P** is given by

$$\mathbf{P} = \begin{pmatrix} 1 & 6 & 6 \\ 0 & 2 & 6 \\ 0 & 0 & -3 \end{pmatrix}.$$

0.5	e the characteristic equation of \mathbf{P} to find \mathbf{P}^{-1} .	
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		

(b) Find the matrix **A** such that

		$\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$	$= \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix}$	0 5 0	$\begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix}$.		[4
		•••••					
				•••••			
)	State the eigenvalues and corre	esponding	g eigenv	vecto	ors of A^3	3.	[2
		•••••					
			(a)	2			

7 It is given that $y = x^2 w$ and

$$x^{2} \frac{d^{2} w}{dx^{2}} + 4x(x+1) \frac{dw}{dx} + (5x^{2} + 8x + 2)w = 5x^{2} + 4x + 2.$$

(a)	Show that
(-)	$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 5x^2 + 4x + 2.$ [4]

Find the general solution for w in terms of x .	[7]
1 1 1 1 1 1 1 1 1 1	

(a)	Starting from the definitions of tann and seen in terms of exponentials, prove that	
	$1 - \tanh^2 x = \operatorname{sech}^2 x.$	[3]
(h)	Using the substitution $u = \tanh x$, or otherwise, find $\int \operatorname{sech}^2 x \tanh^2 x dx$.	[2]
(D)	Using the substitution $u = tain(x)$, of otherwise, find $\int sect(x) tain(x) dx$.	[2]
It is	given that, for $n \ge 0$, $I_n = \int_0^{\ln 3} \operatorname{sech}^n x \tanh^2 x dx$.	
	Show that, for $n \ge 2$,	
	$(n+1)I_n = \left(\frac{4}{5}\right)^3 \left(\frac{3}{5}\right)^{n-2} + (n-2)I_{n-2}.$	[5]
	[You may use the result that $\frac{d}{dx}(\operatorname{sech} x) = -\tanh x \operatorname{sech} x$.]	
	592	

	•••••
	•••••
	•••••
Find the value of I_4 .	[3]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
7°°)	•••••

(d)