	$\begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}$.	[1]
et	$\mathbf{A} = \begin{pmatrix} 3 & 4 \\ 2 & 2 \end{pmatrix}.$	
b)	The triangle DEF in the x - y plane is transformed by \mathbf{A} onto triangle PQR .	
	Given that the area of triangle DEF is 13cm^2 , find the area of triangle PQR .	[2]
)	Find the matrix B such that $\mathbf{AB} = \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}$.	[2]
		•••••
		•••••
	Show that the origin is the only invariant point of the transformation in the x - y plane represents by \mathbf{A} .	ented [4]
		•••••
		•••••

	. age = 0, =0	7231_W21_9P_1
It is given that $y = xe^{ax}$, where a is	a constant.	
Prove by mathematical induction th	at, for all positive integers n ,	
-		
	$\frac{\mathrm{d}^n y}{\mathrm{d}x^n} = \left(a^n x + na^{n-1}\right) \mathrm{e}^{ax}.$	[6

3 Let
$$S_n = \sum_{r=1}^n \ln \frac{r(r+2)}{(r+1)^2}$$
.

Using the method of differen		2(n+1)	
	 		•••••
	 		• • • • • • • • • • • • • • • • • • • •

Let
$$S = \sum_{r=1}^{\infty} \ln \frac{r(r+2)}{(r+1)^2}$$
.

	•••••
7 6 7	

1	The cubic equation	$x^3 + 2x^2 + 3x + 3$	$+3 = 0$ has roots α .	β, γ.
-	Till their their			P

(a)	Find the value of $\alpha^2 + \beta^2 + \gamma^2$.	[2

(b)	Show that $\alpha^3 + \beta^3 + \gamma^3 = 1$.	[2
		••••

 	 ••••
 	 ••••

		. 4 . 1 1 4		$\frac{1}{4}n(n+1)(an^2)$		F.
where a, b and	c are constant	s to be determi	ned.			[(
•••••				•••••		
•••••		•••••		••••••		
		•••••			•	
•••••				•••••		
•••••			•••••			
		•••••	••••••	•••••	•••••	
		•••••				
•••••		••••••	•••••	•••••	•••••	,
				•••••		

[1]

- 5 The curve C has polar equation $r = 3 + 2\sin\theta$, for $-\pi < \theta \le \pi$.
 - (a) The diagram shows part of C. Sketch the rest of C on the diagram.

The straight line *l* has polar equation $r \sin \theta = 2$.

and		e diagra	m m part	(a) and	ind the	polar co	orainates	s of the p	oints of in	tersection
•••••										•••••
						•••••				
	•••••					•••••				
	•••••			•••••	•••••	• • • • • • • • • • • • • • • • • • • •				
	•••••			•••••	•••••	• • • • • • • • • • • • • • • • • • • •				
•••••										
						•••••				
•••••						•••••	_			
	•••••								•••••	

Find the area of R , giving your	answer in exact form.	[/

(a)	curve <i>C</i> has equation $y = \frac{x^2}{x-3}$. Find the equations of the asymptotes of <i>C</i> .	
(b)	Show that there is no point on C for which $0 < y < 12$.	
		•••••

(c) Sketch *C*. [2]

(d) (i) Sketch the graphs of $y = \left| \frac{x^2}{x-3} \right|$ and y = |x| - 3 on a single diagram, stating the coordinates of the intersections with the axes. [4]

(ii) Use your sketch to find the set of values of c for which $\left|\frac{x^2}{x-3}\right| \le |x| + c$ has no solution. [1]

7 The points A, B, C have position vectors

$$2\mathbf{i}+2\mathbf{j}$$
, $-\mathbf{j}+\mathbf{k}$ and $2\mathbf{i}+\mathbf{j}-7\mathbf{k}$

respectively, relative to the origin O.

plane Π has equation $x-3y-2z=1$. Find the perpendicular distance of Π from the origin.		f the plane OAB , giving your answer in the form r.n	γ.
Plane Π has equation $x-3y-2z=1$.			
plane Π has equation $x-3y-2z=1$.			
lane Π has equation $x-3y-2z=1$.			
lane Π has equation $x-3y-2z=1$.			
lane Π has equation $x-3y-2z=1$.			
lane Π has equation $x-3y-2z=1$.			
lane Π has equation $x-3y-2z=1$.			
lane Π has equation $x-3y-2z=1$.			
lane Π has equation $x-3y-2z=1$.			
lane Π has equation $x-3y-2z=1$.			
lane Π has equation $x-3y-2z=1$.			
lane Π has equation $x-3y-2z=1$.			
lane Π has equation $x-3y-2z=1$.			
and the perpendicular distance of H from the origin.	lane Π has equation	on $x - 3y - 2z = 1$.	

	•••••		
•••••	• • • • • • • • • • • • • • • • • • • •		
•••••			
ind an equation fo	or the common	perpendicular to the lines OC and	i <i>AB</i> .
Find an equation fo	or the common	perpendicular to the lines OC and	d <i>AB</i> .
Find an equation fo	or the common	perpendicular to the lines <i>OC</i> and	i <i>AB</i> .
Find an equation fo	or the common	perpendicular to the lines OC and	i <i>AB</i> .
Find an equation fo	or the common	perpendicular to the lines OC and	i AB.
Find an equation fo	or the common	perpendicular to the lines OC and	i AB.
Find an equation fo	or the common	perpendicular to the lines <i>OC</i> and	1 AB.
Find an equation fo	or the common	perpendicular to the lines OC and	1 AB.
Find an equation fo	or the common	perpendicular to the lines OC and	1 AB.
Find an equation fo	or the common	perpendicular to the lines OC and	1 AB.
Find an equation fo	or the common	perpendicular to the lines OC and	1 AB.
Find an equation fo	or the common	perpendicular to the lines OC and	1 AB.
Find an equation fo	or the common	perpendicular to the lines OC and	1 AB.
Find an equation fo	or the common	perpendicular to the lines OC and	1 <i>AB</i> .
Find an equation fo	or the common	perpendicular to the lines OC and	1 AB.
Find an equation fo	or the common	perpendicular to the lines OC and	1 AB.
Find an equation fo	or the common	perpendicular to the lines OC and	1 AB.