1 It is given that

$\alpha + \beta + \gamma = 3$, $\alpha^2 + \beta^2 + \gamma^2 = 5$, $\alpha^3 + \beta^3 + \gamma^3 = 6$.
The cubic equation $x^3 + bx^2 + cx + d = 0$ has roots α , β , γ .
Find the values of b , c and d .

	<u>n</u>	
	$\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)}.$	
	,	
∞		
Deduce the value of $\sum_{r=1}^{\infty} \frac{1}{r}$	$\frac{1}{(r+1)(r+2)}$.	

The sequence of real numbers a_1 , a_2 , a_3 , ... is such that $a_1 = 1$ and

$$a_{n+1} = \left(a_n + \frac{1}{a_n}\right)^3.$$

- (a) Prove by mathematical induction that $\ln a_n \ge 3^{n-1} \ln 2$ for all integers $n \ge 2$. [6] [You may use the fact that $\ln(x + \frac{1}{x}) > \ln x$ for x > 0.] **(b)** Show that $\ln a_{n+1} - \ln a_n > 3^{n-1} \ln 4$ for $n \ge 2$. [2]

- 4 The matrix **M** is given by $\mathbf{M} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$.
 - (a) The matrix **M** represents a sequence of two geometrical transformations.

State the type of each transformation, and make clear the order in which they are applied.	L
	•••••

(b) Find the values of θ , for $0 \le \theta \le \pi$, for which the transformation represented by **M** has exactly one invariant line through the origin, giving your answers in terms of π . [9]

 •••••	

a)	Find a Cartesian equation of Π , giving your answer in the form $ax + by + cz = d$.	[4
	line l passes through the point P with position vector $2\mathbf{i} - 3\mathbf{j} + 5\mathbf{k}$ and is parallel to the	vector k.
	line l passes through the point P with position vector $2\mathbf{i} - 3\mathbf{j} + 5\mathbf{k}$ and is parallel to the Find the position vector of the point where l meets Π .	vector k .
		vector k .

Find the perpendicular distance from P to II.	Find the acute angle betwe	
Find the perpendicular distance from P to II.		
Find the perpendicular distance from P to II.		
Find the perpendicular distance from P to Π .		
Find the perpendicular distance from P to II.		
Find the perpendicular distance from P to Π .		
Find the perpendicular distance from P to Π.		
Find the perpendicular distance from P to II.		
Find the perpendicular distance from P to II.		
Find the perpendicular distance from P to II.		
Find the perpendicular distance from P to Π.		
Find the perpendicular distance from P to II.		
Find the perpendicular distance from P to II.		
Find the perpendicular distance from P to II.		
Find the perpendicular distance from P to II.		
Find the perpendicular distance from P to II.		 ••••••
		 ••••••
(2)		

J	Find the polar coordinates of the point on C that is furthest from the pole.
•	
•	
•	
•	
•	

(h)	Sketch <i>C</i> .	[2]
(v)	Director C.	L - J

(c)	Find the area of the region bounded by C and the initial line, giving your answer in exact form. [6]

7 The curve C has equation $y = \frac{4x+5}{4-4x^2}$.

(a)	Find the equations of the asymptotes of <i>C</i> .	[2]
(b)	Find the coordinates of any stationary points on <i>C</i> .	[4]

[3]

(c) Sketch C, stating the coordinates of the intersections with the axes.

(d) Sketch the curve with equation $y = \left| \frac{4x+5}{4-4x^2} \right|$ and find in exact form the set of values of x for which $4|4x+5| > 5|4-4x^2|$. [6]