1 The heights of the members of a large sports club are normally distributed. A random sample of 11 members of the club is chosen and their heights, x cm, are measured. The results are summarised as follows, where \overline{x} denotes the sample mean of x.

$$\bar{x} = 176.2$$
 $\sum (x - \bar{x})^2 = 313.1$

Test, at the 5% significance level, the this club is equal to 172.5 cm again	ne null hypothesis that the population mean height for members of lest the alternative hypothesis that the mean differs from 172.5 cm. [5]

A large school is holding an essay competition and each student has submitted an essay. To ensure 2 fairness, each essay is given a mark out of 100 by two different judges. The marks awarded to the essays submitted by a random sample of 12 students are shown in the following table.

Student	A	В	С	D	E	F	G	Н	I	J	K	L
Judge 1	62	74	52	48	68	55	56	64	37	70	81	59
Judge 2	65	70	47	49	76	74	67	54	50	77	72	75

(a)	One of the students claims	that Judge 2 is awarding	higher marks than Judge 1.
-----	----------------------------	--------------------------	----------------------------

	••••••
discovered later that the marks awarded to student <i>A</i> have been entered incorrectly. In f ded 65 marks and Judge 2 awarded 62 marks. By considering how this change affects the test statistic, explain why the conclusion carried out in part (a) remains the same.	

3 A random sample of 200 observations of the continuous random variable X was taken and the values are summarised in the following table.

Interval	$0 \leqslant x < 0.5$	$0.5 \leqslant x < 1$	$1 \le x < 1.5$	$1.5 \leqslant x < 2$	$2 \leqslant x < 2.5$	$\boxed{2.5 \leqslant x < 3}$
Observed frequency	5	23	40	41	46	45

It is required to test the goodness of fit of the distribution with probability density function f given by

$$f(x) = \begin{cases} \frac{1}{9}x(4-x) & 0 \le x \le 3, \\ 0 & \text{otherwise.} \end{cases}$$

Most of the relevant expected frequencies, correct to 2 decimal places, are given in the following table.

Interval	$0 \leqslant x < 0.5$	$0.5 \leqslant x < 1$	$1 \le x < 1.5$	$1.5 \leqslant x < 2$	$2 \leqslant x < 2.5$	$2.5 \leqslant x < 3$
Expected frequency	p	q	37.96	43.52	43.52	37.96

•••••	 •••••	
	 •••••	 •••••
	 •••••	
•••••	 	
•••••		

4 The continuous random variable X has cumulative distribution function F given by

$$F(x) = \begin{cases} 0 & x < 2, \\ \frac{1}{60}x^2 - \frac{1}{15} & 2 \le x \le 8, \\ 1 & x > 8. \end{cases}$$

(a)	Find $P(3 \le X \le 6)$.	[1]
(b)	Find $E(\sqrt{X})$.	[3]
	Fig. 25.4	
	59)	2:4

ر)	Find $Var(\sqrt{X})$.	
)	The random variable <i>Y</i> is defined by	$Y = X^3$. Find the probability density function of Y.

Write down an expression for $P(X = r)$ and hence show that the probability generating funct X is $(q+pt)^n$, where $q = 1-p$.

••••••		,	••••••
•••••	•••••	,	
•••••	•••••	•••••	
••••••			
•••••	•••••	,	
•••••	•••••	,	
	/00/		
	\sim	2 1	

- 6 Nassa is researching the lengths of a particular type of snake in two countries, A and B.
 - (a) He takes a random sample of 10 snakes of this type from country A and measures the length, x m, of each snake. He then calculates a 90% confidence interval for the population mean length, μ m, for snakes of this type, assuming that snake lengths have a normal distribution. This confidence interval is $3.36 \le \mu \le 4.22$.

Find the sample mean and an unbiased estimate for the population variance.	[4]
	••••
	••••
	••••
	••••
	••••
	••••
	••••

(b) Nassa also measures the lengths, ym, of a random sample of 8 snakes of this type taken from country B. His results are summarised as follows.

$$\sum y = 27.86$$
 $\sum y^2 = 98.02$

Nassa claims that the mean length of snakes of this type in country B is less than the mean length of snakes of this type in country A. Nassa assumes that his sample from country B also comes from a normal distribution, with the same variance as the distribution from country A.

Test at the 10% significance level whether there is evidence to support Nassa's claim.

[8]

•••••	
•••••	
•••••	 • • •
•••••	
•••••	

***************************************	 • • •
	 · • •

•••••	