A fixed smooth solid sphere has centre O and radius a. A particle of mass m is projected downwards with speed $\sqrt{\frac{1}{6}ag}$ from the point A on the surface of the sphere, where OA makes an angle α with the upward vertical through O (see diagram). The particle moves in part of a vertical circle on the surface of the sphere. It loses contact with the sphere at the point B, where OB makes an angle β with the upward vertical through O. | Given that $\cos \alpha = \frac{2}{3}$, find the value of $\cos \beta$. | [5] | |---|------| | | •••• | | | •••• | | | •••• | | | •••• | | | •••• | | | •••• | | | •••• | | | | | | | | | | | | •••• | | | | | | •••• | | | •••• | | | | | | •••• | Two uniform smooth spheres A and B of equal radii have masses 2m and m respectively. Sphere B is at rest on a smooth horizontal surface. Sphere A is moving on the surface with speed u and collides with B. Immediately before the collision, the direction of motion of A makes an angle α with the line of centres of the spheres, where $\tan \alpha = \frac{4}{3}$ (see diagram). The coefficient of restitution between the spheres is $\frac{1}{3}$. | Find the speed of A after the collision. | [5] | |--|-------| | | | | | ••••• | | | ••••• | | | ••••• | | | ••••• | ••••• | | | | | | ••••• | | (a) | Find the distance of the centre of mass of the object from the end of the cylinder that is not attack to the cone. | |-----|--| 3 | Show that the object can reshorizontal surface. | | | | [3 | |---|----|-----|-------|----| ••••• | 50 | 2 1 | | | A particle P of mass m is moving in a horizontal circle with angular speed ω on the smooth inner surface of a hemispherical shell of radius r. The angle between the vertical and the normal reaction of the surface on P is θ . | Show that $\cos \theta = \frac{g}{\omega^2 r}$. | [3 | |--|-------| Jool | \$° 4 | The plane of the circular motion is at a height x above the lowest point of the shell. When the angular speed is doubled, the plane of the motion is at a height 4x above the lowest point of the shell. |
 | | |------|--| |
 | | |
 | | | | | | | | |
 | | |
 | | |
 | | |
 | | | | | | | | |
 | | |
 | | |
 | | | | | |
 | | |
 | | |
 | | |
 | - A particle P is projected with speed u m s⁻¹ at an angle of θ above the horizontal from a point O on a horizontal plane and moves freely under gravity. The horizontal and vertical displacements of P from O at a subsequent time ts are denoted by x m and y m respectively. - (a) Starting from the equation of the trajectory given in the List of formulae (MF19), show that | $y = x \tan \theta - \frac{8}{2}$ | $\frac{gx^2}{2u^2}(1+\tan^2\theta).$ | | | |---|--------------------------------------|--------------------------------|------| |
 | | | •••• | |
 | | | | | | | | | | | | | •••• | |
 | | | •••• | |
 | | | | |
 | | | | | | | | | |
 | | | •••• | |
 | | | | | | | | | | sses through the point winnor value of θ for which B | | b). e point with coordinates (| 18 | | | | | 18, | | | | | 18, | | | | | 18, | 18, | | | | | 18, | |
 | |------| | | |
 | | | | | | | | | |
 | | | | | | | | | |
 |
 | | | | | |
 | | | |
 | | | | | | | | | |
 | | | | | | | | | |
 |
 | | | | | | | | | | One end of a light elastic string, of natural length a and modulus of elasticity k , is attached of mass m . The other end of the string is attached to a fixed point Q . The particle vertically upwards from Q . When P is moving upwards and at a distance $\frac{4}{3}a$ directly a speed $\sqrt{2ga}$. At this point, its acceleration is $\frac{7}{3}g$ downwards. | e P is projected | |---|------------------| | Show that $k = 4mg$ and find in terms of a the greatest height above Q reached by P. | [8] | Joo\ | | /00\ | | 1 490 11 01 12 | 9231_w20_qp_32 | |--------------------|--|--| | A pa
mkv
The | article P of mass $m \log m \log n$ moves in a horizontal straight line again $^2 N$, where $v m s^{-1}$ is the speed of P after it has moved a distance initial speed of P is $u m s^{-1}$. | enst a resistive force of magnitude ex m and k is a positive constant. | | (a) | Show that $x = \frac{1}{k} \ln 2$ when $v = \frac{1}{2}u$. | [4] | Beginning at the instant when the speed of P is $\frac{1}{2}u$, an additional force acts on P. This force has magnitude $\frac{5m}{v}$ N and acts in the direction of increasing x. | (b) | Show that when the speed of P has increased again to $u \mathrm{ms^{-1}}$, the total distance travelled by P is | |-----|--| | | given by an expression of the form | $\frac{1}{3k}\ln\left(\frac{A-ku^3}{B-ku^3}\right)$ stating the values of the constants A and B. [7]