

A fixed smooth solid sphere has centre O and radius a. A particle of mass m is projected downwards with speed  $\sqrt{\frac{1}{6}ag}$  from the point A on the surface of the sphere, where OA makes an angle  $\alpha$  with the upward vertical through O (see diagram). The particle moves in part of a vertical circle on the surface of the sphere. It loses contact with the sphere at the point B, where OB makes an angle  $\beta$  with the upward vertical through O.

| Given that $\cos \alpha = \frac{2}{3}$ , find the value of $\cos \beta$ . | [5]  |
|---------------------------------------------------------------------------|------|
|                                                                           | •••• |
|                                                                           | •••• |
|                                                                           | •••• |
|                                                                           | •••• |
|                                                                           | •••• |
|                                                                           | •••• |
|                                                                           | •••• |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           | •••• |
|                                                                           |      |
|                                                                           | •••• |
|                                                                           | •••• |
|                                                                           |      |
|                                                                           | •••• |



Two uniform smooth spheres A and B of equal radii have masses 2m and m respectively. Sphere B is at rest on a smooth horizontal surface. Sphere A is moving on the surface with speed u and collides with B. Immediately before the collision, the direction of motion of A makes an angle  $\alpha$  with the line of centres of the spheres, where  $\tan \alpha = \frac{4}{3}$  (see diagram). The coefficient of restitution between the spheres is  $\frac{1}{3}$ .

| Find the speed of $A$ after the collision. | [5]   |
|--------------------------------------------|-------|
|                                            |       |
|                                            | ••••• |
|                                            | ••••• |
|                                            | ••••• |
|                                            | ••••• |
|                                            |       |
|                                            |       |
|                                            |       |
|                                            |       |
|                                            |       |
|                                            |       |
|                                            |       |
|                                            |       |
|                                            | ••••• |
|                                            |       |
|                                            | ••••• |

| (a) | Find the distance of the centre of mass of the object from the end of the cylinder that is not attack to the cone. |
|-----|--------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |
|     |                                                                                                                    |

3

| Show that the object can reshorizontal surface. |    |     |       | [3 |
|-------------------------------------------------|----|-----|-------|----|
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     | ••••• |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 |    |     |       |    |
|                                                 | 50 | 2 1 |       |    |

A particle P of mass m is moving in a horizontal circle with angular speed  $\omega$  on the smooth inner surface of a hemispherical shell of radius r. The angle between the vertical and the normal reaction of the surface on P is  $\theta$ .

| Show that $\cos \theta = \frac{g}{\omega^2 r}$ . | [3    |
|--------------------------------------------------|-------|
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
|                                                  |       |
| Jool                                             | \$° 4 |

The plane of the circular motion is at a height x above the lowest point of the shell. When the angular speed is doubled, the plane of the motion is at a height 4x above the lowest point of the shell.

| <br> |  |
|------|--|
| <br> |  |
| <br> |  |
|      |  |
|      |  |
| <br> |  |
| <br> |  |
|      |  |
| <br> |  |
|      |  |
| <br> |  |
|      |  |
| <br> |  |
| <br> |  |
| <br> |  |
|      |  |
|      |  |
| <br> |  |
| <br> |  |
| <br> |  |
|      |  |
| <br> |  |
| <br> |  |
| <br> |  |
| <br> |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |

- A particle P is projected with speed u m s<sup>-1</sup> at an angle of  $\theta$  above the horizontal from a point O on a horizontal plane and moves freely under gravity. The horizontal and vertical displacements of P from O at a subsequent time ts are denoted by x m and y m respectively.
  - (a) Starting from the equation of the trajectory given in the List of formulae (MF19), show that

| $y = x \tan \theta - \frac{8}{2}$                             | $\frac{gx^2}{2u^2}(1+\tan^2\theta).$ |                                |      |
|---------------------------------------------------------------|--------------------------------------|--------------------------------|------|
| <br>                                                          |                                      |                                | •••• |
| <br>                                                          |                                      |                                |      |
|                                                               |                                      |                                |      |
|                                                               |                                      |                                | •••• |
| <br>                                                          |                                      |                                | •••• |
| <br>                                                          |                                      |                                |      |
| <br>                                                          |                                      |                                |      |
|                                                               |                                      |                                |      |
| <br>                                                          |                                      |                                | •••• |
| <br>                                                          |                                      |                                |      |
|                                                               |                                      |                                |      |
| sses through the point winnor value of $\theta$ for which $B$ |                                      | b). e point with coordinates ( | 18   |
|                                                               |                                      |                                | 18,  |
|                                                               |                                      |                                | 18,  |
|                                                               |                                      |                                | 18,  |
|                                                               |                                      |                                |      |
|                                                               |                                      |                                |      |
|                                                               |                                      |                                |      |
|                                                               |                                      |                                |      |
|                                                               |                                      |                                |      |
|                                                               |                                      |                                |      |
|                                                               |                                      |                                |      |
|                                                               |                                      |                                |      |
|                                                               |                                      |                                | 18,  |
|                                                               |                                      |                                | 18,  |

| <br> |
|------|
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |

| One end of a light elastic string, of natural length $a$ and modulus of elasticity $k$ , is attached of mass $m$ . The other end of the string is attached to a fixed point $Q$ . The particle vertically upwards from $Q$ . When $P$ is moving upwards and at a distance $\frac{4}{3}a$ directly a speed $\sqrt{2ga}$ . At this point, its acceleration is $\frac{7}{3}g$ downwards. | e P is projected |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Show that $k = 4mg$ and find in terms of a the greatest height above Q reached by P.                                                                                                                                                                                                                                                                                                  | [8]              |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| Joo\                                                                                                                                                                                                                                                                                                                                                                                  |                  |

/00\

|                    | 1 490 11 01 12                                                                                                                                                                                       | 9231_w20_qp_32                                                             |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| A pa<br>mkv<br>The | article $P$ of mass $m \log m \log n$ moves in a horizontal straight line again $^2 N$ , where $v m s^{-1}$ is the speed of $P$ after it has moved a distance initial speed of $P$ is $u m s^{-1}$ . | enst a resistive force of magnitude $ex$ m and $k$ is a positive constant. |
| (a)                | Show that $x = \frac{1}{k} \ln 2$ when $v = \frac{1}{2}u$ .                                                                                                                                          | [4]                                                                        |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |
|                    |                                                                                                                                                                                                      |                                                                            |

Beginning at the instant when the speed of P is  $\frac{1}{2}u$ , an additional force acts on P. This force has magnitude  $\frac{5m}{v}$ N and acts in the direction of increasing x.

| (b) | Show that when the speed of P has increased again to $u \mathrm{ms^{-1}}$ , the total distance travelled by P is |
|-----|------------------------------------------------------------------------------------------------------------------|
|     | given by an expression of the form                                                                               |

 $\frac{1}{3k}\ln\left(\frac{A-ku^3}{B-ku^3}\right)$ stating the values of the constants A and B. [7]