| | | ••••• | |---------------------------|--|-------| ••••• | about the <i>x</i> -axis. | he area of the surface generated when the curve is rotated |
 | | | |--------|---|---|---| | | | | | | | | | | | (00) | | | | | |
• | • | • | | \sim | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | 4 Find the solution of the differential equation $$x\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = \mathrm{e}^x$$ | for which $y = 3$ when $x = 1$. Give your answer in the form $y = f(x)$. | [8] | |--|-----| 5 The curve C has equation $$y^2 + (xy+1)^2 = 5.$$ (a) Show that, at the point (1,1) on C, $\frac{dy}{dx} = -\frac{2}{3}$. [3] |
• |
 | | |---|------|--| | | | | | | | | |
• |
 | | **(b)** Find the value of $\frac{d^2y}{dx^2}$ at the point (1,1). [5] | |
 | | |--|------|--| | |
 | | | | | | | |
 | | | 6 Find | d the particular | solution | of the diff | erential | equation | |--------|------------------|----------|-------------|----------|----------| |--------|------------------|----------|-------------|----------|----------| $$\frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 15x = 102\cos 3t,$$ | | $\mathbf{G}t$ | | |--|-------------------|------| | given that, when $t = 0$, $x = 1$ and $\frac{dx}{dt}$ | $\frac{1}{2}=0$. | [11] | 502 | | | Show that $\sum_{r=1}^{\infty} z^{2r} = \frac{z^{2n+1} - z}{z - z^{-1}}$, | | |--|-----------| | | | | |
 | | | | | |
••••• | | | | | |
••••• | | |
 | | | | | | | | |
 | | | | | |
 | | | | | |
 | | | | | |
••••• | | | | | | | | |
 | | | | | |
 | | | | | |
••••• | | |
 | | | | | | | | |
 | | | | | |
 | | | | | | | | | | | | | | $1 + 2\sum_{r=1}^{n} \cos(2r\theta) =$ | $\frac{\sin(2n+1)\theta}{\sin\theta}$. | [5] | |--|---|-----| |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | | | | | |
 | | | |
 | | | | | | | |
 | | | |
 | | | | | | | |
 | | | |
 | | | | | | | | | | | | | | | 8 The diagram shows the curve $y = \frac{1}{\sqrt{x^2 + x + 1}}$ for $x \ge 0$, together with a set of *n* rectangles of unit width. By considering the sum of the areas of these rectangles, show that $$\sum_{r=1}^{n} \frac{1}{\sqrt{r^2 + r + 1}} < \ln\left(\frac{1}{3} + \frac{2}{3}n + \frac{2}{3}\sqrt{n^2 + n + 1}\right).$$ [10] |
 | |------| |
 | |
 | | | | | | | | | | | |
 | |
 | | | | | |
 | | | | | - 9 It is given that a is a positive constant. - (a) Show that the system of equations $$ax + (2a+5)y + (a+1)z = 1,$$ $-4y = 2,$ $3y-z = 3,$ | has a unique solution and interpret this situation geometrically. [3] |] | |---|---| | | • | The matrix \mathbf{A} is given by $$\mathbf{A} = \begin{pmatrix} a & 2a+5 & a+1 \\ 0 & -4 & 0 \\ 0 & 3 & -1 \end{pmatrix}.$$ | ••••• | | | | |-------|-----------------------------|--|--| | ••••• | 211 | | | | | ind | a matrix P such that | (| | | | | $\mathbf{A} = \mathbf{P} \begin{pmatrix} a & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -4 \end{pmatrix} \mathbf{P}^{-1}.$ | | | | | (0 0 -4) | ••••• | | | | | | | | | | | | | |
 | | |------|--| |
 | | | | | | | | |
 | | |
 | | | | | | | | |
 | | |
 | | |
 | | |
 | | | | | |
 | | |
 | | | | | | | | | | | |
 |