(••)	2) 4111414111111111111111111111111111111		up to and including the term in
<i>a</i> >		$\int_{0}^{\frac{1}{5}} -x^2$	
(b)	Deduce an approximation to J terms.	$\int_0^\infty e^{-x} dx$, giving your answ	er as a rational fraction in its lo
		FET-SEAFET	

2 The variables x and y are related by the differential equation

$$9\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + y = 3x^2 + 30x.$$

Find the general solution for y in terms of x .	[6]
State an approximate solution for large positive values of x .	[1]

3	(a)	Show	that t	the sy	vstem	of ea	quations
J	(a)	SHOW	mai	uic s	ysiciii	OI CC	Juanons

$$x-2y-4z = 1,$$

$$x-2y+kz = 1,$$

$$-x+2y+2z = 1,$$

	x = 2y + h2 = 1	
	-x+2y+2z=1,	
		[0]
	where k is a constant, does not have a unique solution.	[2]
(b)	Given that $k=-4$, show that the system of equations in part (a) is consistent.	Interpret this
. ,	situation geometrically.	[3]
		· · · · · · · · · · · · · · · · · · ·
	J.00\	

		•••••				
		••••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
			• • • • • • • • • • • • • • • • • • • •			
			•••••			
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			•••••
For the case where $k \neq -$ nterpret this situation ge	2 and $k \neq -$ eometricall	-4, show tha y.	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ nterpret this situation ge	2 and <i>k</i> ≠ -eometricall	-4, show tha	nt the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ interpret this situation go	2 and k≠-eometricall	-4, show tha	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -1$ interpret this situation ge	2 and <i>k</i> ≠ -eometricall	-4, show tha	nt the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ nterpret this situation go	2 and k≠-eometricall	-4, show tha	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ nterpret this situation go	2 and k≠-eometricall	-4, show that	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ interpret this situation ge	2 and k≠-eometricall	-4, show that y.	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ nterpret this situation ge	2 and k≠-eometricall	-4, show that	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ interpret this situation go	2 and k≠-eometricall	-4, show that	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ nterpret this situation ge	2 and k≠-eometricall	-4, show that y.	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ interpret this situation ge	2 and k≠-eometricall	-4, show that y.	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ interpret this situation go	2 and k≠-eometricall	-4, show that y.	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ nterpret this situation ge	2 and k≠-eometricall	-4, show that y.	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ nterpret this situation ge	2 and k≠-eometricall	-4, show that	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ nterpret this situation go	2 and k≠-eometricall	-4, show that y.	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ nterpret this situation ge	2 and $k \neq$ -eometricall	-4, show that y.	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ nterpret this situation ge	2 and $k \neq$ -eometricall	-4, show that y.	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ nterpret this situation go	2 and $k \neq$ -eometricall	-4, show that y.	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ nterpret this situation ge	2 and k≠-eometricall	-4, show that y.	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ interpret this situation ge	2 and $k \neq$ -eometricall	-4, show that y.	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ nterpret this situation ge	2 and k≠-eometricall	-4, show that y.	at the system	of equations i	n part (a) is	inconsi
For the case where $k \neq -$ nterpret this situation go	2 and k≠-eometricall	-4, show that y.	at the system	of equations i	n part (a) is	inconsi

4

The diagram shows the curve with equation $y = 1 - x^3$ for $0 \le x \le 1$, together with a set of *n* rectangles of width $\frac{1}{n}$.

(a) By considering the sum of the areas of the rectangles, show that

$\int_0^1 (1 - x^3) \mathrm{d}x \le \frac{3n^2 + 2n - 1}{4n^2}.$	[4]

/00\

It is given that 5

$$x = \sinh^{-1} t, \quad y = \cos^{-1} t,$$

By differentiating cos y	with respect to t, sho	w that $\frac{dy}{dt} = -\frac{1}{\sqrt{1-t^2}}$	
	•••••		
•••••	•••••		
			•••••
•••••	/00		

 simplifying your answer.	

6 (a)	Use de Moivre's theorem to show that $\sin^4 \theta = \frac{1}{8}(\cos 4\theta - 4\cos 2\theta + 3)$. [5]

('n	Find	the	solution	of the	differential	equation
١	W.) Tillu	uic	Solution	or the	umeremai	equation

$$\frac{\mathrm{d}y}{\mathrm{d}\theta} + y\cot\theta = \sin^3\theta$$

	u o	
for which $y = 0$ when $\theta = \frac{1}{2}$	π.	[6]
	2005	

7 The matrix **P** is given by

$$\mathbf{P} = \begin{pmatrix} 1 & 4 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

(a)	State the eigenvalues of P .	[1]
(b)	Use the characteristic equation of \mathbf{P} to find \mathbf{P}^{-1} .	[4
	285	

The 3×3 matrix **A** has distinct eigenvalues b, -1, 1 with corresponding eigenvectors

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$

respectively.

1.111	and \mathbf{A} in terms of b .				
••••				 	
				 •••••	
•••••		•••••		 	
••••				 	
				 •••••	
				 •••••	
•••••		•••••		 	
••••				 	
•••••			4-1	 	

[2]

[3]

8 (a) Sketch the graph of $y = \coth x$ for x > 0 and state the equations of the asymptotes.

(b) Starting from the definitions of coth and cosech in terms of exponentials, prove that $\coth^2 x - \operatorname{cosech}^2 x = 1.$

The curve C has equation $y = \ln \coth(\frac{1}{2}x)$ for x > 0.

	•••••
h of C from $x = a$ to $x = 2a$ is $\ln 4$, where a is a po	sitive constant
ind. in logarithmic form, the exact value of a.	
, 6	
	•••••
	th of C from $x = a$ to $x = 2a$ is $\ln 4$, where a is a point, in logarithmic form, the exact value of a .