| (a) | State the value of d . | |-----|---| | (b) | Find a cubic equation, with coefficients in terms of b and c, whose roots are $\alpha + 1$, $\beta + 1$, $\gamma + 1$ | (c) | Given also that $\gamma + 1 = -\alpha - 1$, deduce that $(c - 2b + 3)(b - 3) = b - c$. [4] | (00) | 1 |
 | | | • | | |-----------|-------|-------------|---|-------| |
 | | | | | | | | | | | |
••••• | ••••• | ••••••••••• | ••••• | ••••• | |
 | | | | | | | | | | | |
 | | | | | |
 | | | | | |
 | | | | | | | | | | | | ••••• | | ••••• | ••••• | ••••• | |
 | | | | | | | | | | | | | | | | | |
 | | | | | |
 | | | | | |
 | | ••••• | ••••• | | |
 | | | | | |
 | | | | | | | | | | | | | | | | | |
••••• | | ••••• | ••••• | | | | | ••••• | ••••• | | |
 | | | | | |
 | | | | | | | | | | | | _et : | $u_n = x^{n+1} + \sqrt{x^{2n+2} + 1} + \frac{1}{x^n - \sqrt{x^{2n} + 1}}.$ | | |------------|---|--| | (b) | Use the method of differences to find $\sum_{n=1}^{N} u_n$ in terms of N and x. | (c) | Deduce the set of values of x for which the infinite series | | | (c) | Deduce the set of values of x for which the infinite series $u_1 + u_2 + u_3 + \dots$ | | | (c) | | | | (c) | $u_1 + u_2 + u_3 + \dots$ | | | (c) | $u_1 + u_2 + u_3 + \dots$ | | | (c) | $u_1 + u_2 + u_3 + \dots$ | | | (c) | $u_1 + u_2 + u_3 + \dots$ | | | (c) | $u_1 + u_2 + u_3 + \dots$ | | | (c) | $u_1 + u_2 + u_3 + \dots$ | | | (c) | $u_1 + u_2 + u_3 + \dots$ | | | (c) | $u_1 + u_2 + u_3 + \dots$ | | | (c) | $u_1 + u_2 + u_3 + \dots$ | | 4 The matrices **A** and **B** are given by $$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & \frac{1}{2} \end{pmatrix}.$$ | Give full details of the geometrical transformation in the x - y plane represented by \mathbf{A} . | [1] | |--|--| | Give full details of the geometrical transformation in the x - y plane represented by B . | [2] | | | | | | | | triangle DEF in the x - y plane is transformed by \mathbf{AB} onto triangle PQR . | | | Show that the triangles <i>DEF</i> and <i>PQR</i> have the same area. | [3] | Give full details of the geometrical transformation in the <i>x-y</i> plane represented by B . triangle <i>DEF</i> in the <i>x-y</i> plane is transformed by AB onto triangle <i>PQR</i> . Show that the triangles <i>DEF</i> and <i>PQR</i> have the same area. | ## Page 5 of 11 9231_w20_qp_12 |] | Find the equations of the invariant lines, through the origin, of the transformation in the x - y p represented by \mathbf{AB} . | |---|--| [3] - 5 The curve C has polar equation $r = \ln(1 + \pi \theta)$, for $0 \le \theta \le \pi$. - (a) Sketch C and state the polar coordinates of the point of C furthest from the pole. (b) Using the substitution $u = 1 + \pi - \theta$, or otherwise, show that the area of the region enclosed by C and the initial line is $\frac{1}{2}(1+\pi)\ln(1+\pi)(\ln(1+\pi)-2)+\pi.$ [6] | | | | | |
 | | |---|-------|---|---|-------|------|--|
 | • | ••••• | • | • | ••••• |
 | - **6** Let *a* be a positive constant. - (a) The curve C_1 has equation $y = \frac{x-a}{x-2a}$. [2] Sketch C_1 . The curve C_2 has equation $y = \left(\frac{x-a}{x-2a}\right)^2$. The curve C_3 has equation $y = \left|\frac{x-a}{x-2a}\right|$. | (b) (i | i) | Find the coordinates of any stationary points of C_2 . | [3] | |--------|----|--|------| | | | | | | | | | •••• | | | | | | | | | | | | | | | •••• | | | | | | | | | | •••• | | | | | •••• | | | | | | | | | | •••• | | | | | •••• | | | | | | | | | | | | | | | •••• | - (ii) Find also the coordinates of any points of intersection of C_2 and C_3 . [3] - (c) Sketch C_2 and C_3 on a single diagram, clearly identifying each curve. Hence find the set of values of x for which $\left(\frac{x-a}{x-2a}\right)^2 \le \left|\frac{x-a}{x-2a}\right|$. [5] 7 The points A, B, C have position vectors $$-2\mathbf{i}+2\mathbf{j}-\mathbf{k}$$, $-2\mathbf{i}+\mathbf{j}+2\mathbf{k}$, $-2\mathbf{j}+\mathbf{k}$, respectively, relative to the origin O. |) | Find the equation of the plane ABC, giving your answer in the form $ax + by + cz = d$. | | |---|---|--| Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> . | | | | Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> . | | | | Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> . | | | | Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> . | | | | Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> . | | | | Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> . | | | | Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> . | | | | Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> . | | | | Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> . | | | | Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> . | | Page 11 of 11 9231_w20_qp_12 The point *D* has position vector $t\mathbf{i} - \mathbf{j}$. (c) Given that the shortest distance between the lines AB and CD is $\sqrt{10}$, find the value of t. [6] www.CasperYC.club/9231