(a)	State the value of d .
(b)	Find a cubic equation, with coefficients in terms of b and c, whose roots are $\alpha + 1$, $\beta + 1$, $\gamma + 1$
(c)	Given also that $\gamma + 1 = -\alpha - 1$, deduce that $(c - 2b + 3)(b - 3) = b - c$. [4]
	(00)

1

 			• • • • • • • • • • • • • • • • • • • •	
 •••••	•••••	•••••••••••	•••••	•••••
•••••		•••••	•••••	•••••
 		•••••	•••••	
 •••••		•••••	•••••	
		•••••	•••••	

_et :	$u_n = x^{n+1} + \sqrt{x^{2n+2} + 1} + \frac{1}{x^n - \sqrt{x^{2n} + 1}}.$	
(b)	Use the method of differences to find $\sum_{n=1}^{N} u_n$ in terms of N and x.	
(c)	Deduce the set of values of x for which the infinite series	
(c)	Deduce the set of values of x for which the infinite series $u_1 + u_2 + u_3 + \dots$	
(c)		
(c)	$u_1 + u_2 + u_3 + \dots$	
(c)	$u_1 + u_2 + u_3 + \dots$	
(c)	$u_1 + u_2 + u_3 + \dots$	
(c)	$u_1 + u_2 + u_3 + \dots$	
(c)	$u_1 + u_2 + u_3 + \dots$	
(c)	$u_1 + u_2 + u_3 + \dots$	
(c)	$u_1 + u_2 + u_3 + \dots$	
(c)	$u_1 + u_2 + u_3 + \dots$	
(c)	$u_1 + u_2 + u_3 + \dots$	

4 The matrices **A** and **B** are given by

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & \frac{1}{2} \end{pmatrix}.$$

Give full details of the geometrical transformation in the x - y plane represented by \mathbf{A} .	[1]
Give full details of the geometrical transformation in the x - y plane represented by B .	[2]
triangle DEF in the x - y plane is transformed by \mathbf{AB} onto triangle PQR .	
Show that the triangles <i>DEF</i> and <i>PQR</i> have the same area.	[3]
	Give full details of the geometrical transformation in the <i>x-y</i> plane represented by B . triangle <i>DEF</i> in the <i>x-y</i> plane is transformed by AB onto triangle <i>PQR</i> . Show that the triangles <i>DEF</i> and <i>PQR</i> have the same area.

Page 5 of 11

9231_w20_qp_12

]	Find the equations of the invariant lines, through the origin, of the transformation in the x - y p represented by \mathbf{AB} .

[3]

- 5 The curve C has polar equation $r = \ln(1 + \pi \theta)$, for $0 \le \theta \le \pi$.
 - (a) Sketch C and state the polar coordinates of the point of C furthest from the pole.

(b) Using the substitution $u = 1 + \pi - \theta$, or otherwise, show that the area of the region enclosed by C and the initial line is

 $\frac{1}{2}(1+\pi)\ln(1+\pi)(\ln(1+\pi)-2)+\pi.$ [6]

• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	 	

- **6** Let *a* be a positive constant.
 - (a) The curve C_1 has equation $y = \frac{x-a}{x-2a}$. [2] Sketch C_1 .

The curve C_2 has equation $y = \left(\frac{x-a}{x-2a}\right)^2$. The curve C_3 has equation $y = \left|\frac{x-a}{x-2a}\right|$.

(b) (i	i)	Find the coordinates of any stationary points of C_2 .	[3]
			••••
			••••
			••••
			••••
			••••
			••••
			••••

- (ii) Find also the coordinates of any points of intersection of C_2 and C_3 . [3]
- (c) Sketch C_2 and C_3 on a single diagram, clearly identifying each curve. Hence find the set of values of x for which $\left(\frac{x-a}{x-2a}\right)^2 \le \left|\frac{x-a}{x-2a}\right|$. [5]

7 The points A, B, C have position vectors

$$-2\mathbf{i}+2\mathbf{j}-\mathbf{k}$$
, $-2\mathbf{i}+\mathbf{j}+2\mathbf{k}$, $-2\mathbf{j}+\mathbf{k}$,

respectively, relative to the origin O.

)	Find the equation of the plane ABC, giving your answer in the form $ax + by + cz = d$.	
	Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> .	
	Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> .	
	Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> .	
	Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> .	
	Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> .	
	Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> .	
	Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> .	
	Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> .	
	Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> .	
	Find the acute angle between the planes <i>OBC</i> and <i>ABC</i> .	

Page 11 of 11 9231_w20_qp_12 The point *D* has position vector $t\mathbf{i} - \mathbf{j}$. (c) Given that the shortest distance between the lines AB and CD is $\sqrt{10}$, find the value of t. [6]

www.CasperYC.club/9231