- 1 The matrix **M** is given by $\mathbf{M} = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$, where a and b are positive constants.
 - (a) The matrix ${\bf M}$ represents a sequence of two geometrical transformations.

	State the type of each transformation, and make clear the order in which they are applied. [2]
- T-1	
The	unit square in the x - y plane is transformed by \mathbf{M} onto parallelogram $OPQR$.
(b)	Find, in terms of a and b , the matrix which transforms parallelogram $OPQR$ onto the unit square. [2]

It is given that the area of OPQR is 2 cm^2 and that the line x+3y=0 is invariant under the transformation represented by **M**.

2 (a) Use standard results from the List of Formulae (MF19) to show that

$$\sum_{r=1}^{n} (7r+1)(7r+8) = an^{3} + bn^{2} + cn,$$

where a , b and c are constants to be det	ermined.	[3]

ose me memoa or a	fferences to find $\sum_{r=1}^{\infty} \frac{1}{(7r+1)(7r+8)}$ in terms of n .	
		•••••
		•••••
		•••••
		•••••
Deduce the value of	$\sum_{r=1}^{\infty} \frac{1}{(7r+1)(7r+8)}.$	
	r=1	
	/00\	

3 The cubic equation $x^3 + cx + 1 = 0$, where c is a constant, has roots α ,	β, γ.
---	-------

(a)	Find a cubic equation whose roots are α^3 , β^3 , γ^3 .	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
(b)	Show that $\alpha^6 + \beta^6 + \gamma^6 = 3 - 2c^3$.	[3]
		•••••
		•••••
		•••••

Find t	he real v	alue of	c for whi	ch the m	$ \begin{array}{c} 1 \\ \alpha \\ \beta \end{array} $	α^3 1 3 γ^3	β^3 γ^3 1	is singular	:	[5
	•••••	•••••				••••••	•••••			 ••••
	••••••	•••••				•••••	•••••			 •••••
						•••••	•••••			
						•••••	•••••			
	•••••									
	•••••					•••••	•••••			
•••••	•••••	•••••	••••••			•••••	•••••			 •••••
					- T-E					
					60					
,						2	\$			

4 The points A, B, C have position vectors

$$-\mathbf{i}+\mathbf{j}+2\mathbf{k}$$
, $-2\mathbf{i}-\mathbf{j}$, $2\mathbf{i}+2\mathbf{k}$,

respectively, relative to the origin O.

- 1110, 0110, 0 q	uation of the pl		, 111 <i>g</i>				
			•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
			•••••				•••••
•••••			•••••				•••••
		•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••			•••••				•••••
				•••••	•••••	•••••	
							•••••
 •••••							•••••

b) Find the perpendicular distance from O to the plane ABC.	[2
) Find the acute angle between the planes <i>OAB</i> and <i>ABC</i> .	[.

$\frac{\mathrm{d}^{2n-1}}{\mathrm{d}x^{2n-1}}$	$f(x \sin x) = (-1)^{n-1} (x \cos x + (2n-1)\sin x).$	[7]
	7 a 5 T	

Page 10 of 15	9231_w20_qp_11
(0)	

(a)	Find the equations of the asymptotes of <i>C</i> .	
		•••••
(b)	Show that there is no point on C for which $1 < y < 5$.	
` /		
` '		

(c) Find the coordinates of the intersections of *C* with the axes, and sketch *C*. [3]

(d) Sketch the curve with equation $y = \left| \frac{x^2 + x - 1}{x - 1} \right|$. [2]

7 (a) Show that the curve with Cartesian equation

$$(x^2 + y^2)^{\frac{5}{2}} = 4xy(x^2 - y^2)$$

has polar equation $r = \sin 4\theta$.	[4]

The curve C has polar equation $r = \sin 4\theta$, for $0 \le \theta \le \frac{1}{4}\pi$.

)	Sketch <i>C</i> and state the equation of the line of symmetry.	[3]
		••••
)	Find the exact value of the area of the region enclosed by C .	[4]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
	/00\	

Using the identity $\sin 4\theta \equiv 4 \sin \theta \cos^3 \theta - 4 \sin^3 \theta \cos \theta$, find the maximum distance of C from line $\theta = \frac{1}{2}\pi$. Give your answer correct to 2 decimal places.		
•••••		
•••••		
•••••		
•••••		
	700\	
	\sim	