1 The times taken by members of a large quiz club to complete a challenge have a normal distribution with mean  $\mu$  minutes. The times, x minutes, are recorded for a random sample of 8 members of the club. The results are summarised as follows, where  $\overline{x}$  is the sample mean.

|                  | 2                                  |
|------------------|------------------------------------|
| $\bar{x} = 33.8$ | $\sum (x - \overline{x})^2 = 94.5$ |

| Find a 95% confidence interval for $\mu$ . | [4] |
|--------------------------------------------|-----|
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |
|                                            |     |

A scientist is investigating the size of shells at various beach locations. She selects four beach locations and takes a random sample of shells from each of these beaches. She classifies each shell as large or small. Her results are summarised in the following table.

|               |       | Beach location |     |     |     |       |
|---------------|-------|----------------|-----|-----|-----|-------|
|               |       | A              | В   | С   | D   | Total |
| Size of shell | Large | 68             | 69  | 96  | 81  | 314   |
| Size of shell | Small | 28             | 55  | 64  | 39  | 186   |
|               | Total | 96             | 124 | 160 | 120 | 500   |

| Test, at the 10% significance level, whether the size of shell is independent of the beach location. [7] |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
|                                                                                                          |  |  |  |  |  |
| 382                                                                                                      |  |  |  |  |  |

George throws two coins, A and B, at the same time. Coin A is biased so that the probability of

| (a)        | Find the value of <i>a</i> .                                                                            | ГЭ                                      |
|------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------|
| (a)        | Find the value of $a$ .                                                                                 | [2]                                     |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         | • • • • • • • • • • • • • • • • • • • • |
|            |                                                                                                         | •••••                                   |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         | • • • • • • • • • • • • • • • • • • • • |
| Гће        | random variable $Y$ is the sum of two independent observations of $X$ .                                 |                                         |
| <b>(b)</b> | Find the probability generating function of <i>Y</i> , giving your answer as a polynomial in <i>t</i> . | [3                                      |
| ` _        |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         |                                         |
|            |                                                                                                         | · • • • • • • • • • • • • • • • • • • • |
|            |                                                                                                         |                                         |

3

·············/oo\········

4 The continuous random variable X has probability density function f given by

| $f(x) = \begin{cases} \frac{3}{8} \left( 1 + \frac{1}{x^2} \right) \end{cases}$ | $1 \leqslant x \leqslant 3,$ |
|---------------------------------------------------------------------------------|------------------------------|
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                           | otherwise                    |

| (a) | Find $E(\sqrt{X})$ . | (0                     | otherwise. | [3] |
|-----|----------------------|------------------------|------------|-----|
|     |                      |                        |            |     |
|     |                      |                        |            |     |
|     |                      |                        |            |     |
|     |                      |                        |            |     |
|     |                      |                        |            |     |
|     |                      |                        |            |     |
|     |                      |                        |            |     |
|     |                      |                        |            |     |
| The | random variable Y is | s given by $Y = X^2$ . |            |     |
| (b) | Find the probability | density function of Y. |            | [4] |
|     |                      |                        |            |     |
|     |                      |                        |            |     |
|     |                      |                        |            |     |

-----/oo\------

5 A manager claims that the lengths of the rubber tubes that his company produces have a median of 5.50 cm. The lengths, in cm, of a random sample of 11 tubes produced by this company are as follows.

5.56 5.45 5.47 5.58 5.54 5.52 5.60 5.35 5.59 5.51 5.62

| It is required to test at the 10% significance level the null hypothesis that the population median length is 5.50 cm against the alternative hypothesis that the population median length is not equal to 5.50 cm. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Show that both a sign test and a Wilcoxon signed-rank test give the same conclusion and state this conclusion. [9]                                                                                                  |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                     |

A company has two machines, A and B, which independently fill small bottles with a liquid. The volumes of liquid per bottle, in suitable units, filled by machines A and B are denoted by x and y respectively. A scientist at the company takes a random sample of 40 bottles filled by machine A and a random sample of 50 bottles filled by machine B. The results are summarised as follows.

$$\Sigma x = 1120$$
  $\Sigma x^2 = 31400$   $\Sigma y = 1370$   $\Sigma y^2 = 37600$ 

The population means of the volumes of liquid in the bottles filled by machines A and B are denoted by  $\mu_A$  and  $\mu_B$ .

| , | Test at the 2% significance level whether there is any difference between $\mu_A$ and $\mu_B$ . |
|---|-------------------------------------------------------------------------------------------------|
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
| • |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
| • |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
| • |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
| • |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
| • |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
|   |                                                                                                 |
| • |                                                                                                 |
|   |                                                                                                 |

| <br>      |       | <br> |
|-----------|-------|------|
| <br>      |       | <br> |
|           |       | <br> |
| <br>      |       | <br> |
| <br>      |       | <br> |
|           |       |      |
|           |       | <br> |
| <br>••••• | ••••• | <br> |
| <br>      |       | <br> |
|           |       |      |
|           |       |      |
| <br>••••• | ••••• | <br> |
| <br>      |       | <br> |
|           |       |      |
|           |       |      |
| <br>••••• | ••••• | <br> |
| <br>      |       | <br> |
| <br>      |       | <br> |
|           |       | <br> |
|           |       |      |