1

A particle of weight $10\,\mathrm{N}$ is attached to one end of a light elastic string. The other end of the string is attached to a fixed point A on a horizontal ceiling. A horizontal force of $7.5\,\mathrm{N}$ acts on the particle. In the equilibrium position, the string makes an angle θ with the ceiling (see diagram). The string has natural length $0.8\,\mathrm{m}$ and modulus of elasticity $50\,\mathrm{N}$.

(a)	Find the tension in the string.	[2]
(b)	Find the vertical distance between the particle and the ceiling.	[3]

2	One end of a light inextensible string of length a is attached to a fixed point O . A particle of mass m is attached to the other end of the string. The particle is held at the point A with the string taut. The angle
	between OA and the downward vertical is equal to α , where $\cos \alpha = \frac{4}{5}$. The particle is projected from A ,
	perpendicular to the string in an upwards direction, with a speed $\sqrt{3ga}$. It then moves along a circular path in a vertical plane. The string first goes slack when it makes an angle θ with the upward vertical through O .
	Find the value of $\cos \theta$. [5]
	735

Find an expression for x in term	ms of t .	

4

An object is composed of a hemispherical shell of radius 2a attached to a closed hollow circular cylinder of height h and base radius a. The hemispherical shell and the hollow cylinder are made of the same uniform material. The axes of symmetry of the shell and the cylinder coincide. AB is a diameter of the lower end of the cylinder (see diagram).

(a)	Find, in terms of a and h , an expression for the distance of the centre of mass of the object from AB . [4]

The object is placed on a rough plane which is inclined to the horizontal at an angle θ , where $\tan \theta = \frac{2}{3}$. The object is in equilibrium with AB in contact with the plane and lying along a line of greatest slope of the plane.

(b) Find the set of possible values of h , in terms of a .	[4]
	•••••
	••••••
	•••••
Z & Z I	
	• • • • • • • • • • • • • • • • • • • •

A light inextensible string AB passes through two small holes C and D in a smooth horizontal table where AC = 3a and DB = a. A particle of mass m is attached at the end A and moves in a horizontal circle with angular velocity ω . A particle of mass $\frac{3}{4}m$ is attached to the end B and moves in a horizontal circle with angular velocity $k\omega$. AC makes an angle θ with the downward vertical and DB makes an angle θ with the horizontal (see diagram).

Find the value of k .	[7]
	1-5°2

Page 7 of 11	9231_s22_qp_3

spł res	To uniform smooth spheres A and B of equal radii have masses m and km respectively. The two heres are on a horizontal surface. Sphere A is travelling with speed u towards sphere B which is at a . The spheres collide. Immediately before the collision, the direction of motion of A makes an angle with the line of centres. The coefficient of restitution between the spheres is $\frac{1}{2}$.
(a)	Show that the speed of <i>B</i> after the collision is $\frac{3u\cos\alpha}{2(1+k)}$ and find also an expression for the speed of <i>A</i> along the line of centres after the collision, in terms of <i>k</i> , <i>u</i> and α . [4]

6

After the collision, the kinetic energy of A is equal to the kinetic energy of B.

 	•••••	••••••	•••••	•••••
 	•••••			•••••
 	•••••			
 	•••••			•••••
 •••••	•••••		•••••	
 	•••••			
 	•••••			•••••
 		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
 •••••			•••••	
 •••••	•••••	••••••••••	•••••	•••••

7	Particles P and Q are projected in the same vertical plane from a point O at the top of a cliff. The height of the cliff exceeds 50 m. Both particles move freely under gravity. Particle P is projected with
	speed $\frac{35}{2}$ m s ⁻¹ at an angle α above the horizontal, where $\tan \alpha = \frac{4}{3}$. Particle Q is projected with speed
	$u\mathrm{ms}^{-1}$ at an angle β above the horizontal, where $\tan\beta=\frac{1}{2}$. Particle Q is projected one second after the
	projection of particle P . The particles collide T s after the projection of particle Q .
	(a) Write down expressions, in terms of T , for the horizontal displacements of P and Q from O when they collide and hence show that $4\mu T = 21\sqrt{5}(T+1)$

they collide and hence show that $4uT = 21\sqrt{5(T+1)}$.	[4
2003	

E	ind the horizontal and vertical displacements of the particles from O when they collide.