Given that the length of C is s , find	$d \alpha$ in terms of s. [5]

	$\cosh 2x = 2\sinh^2 x + 1.$	
		••••••
		••••••
(b)	Find the set of values of k for which $\cosh 2x = k \sinh x$ has two distinct real roots.	
(D)	Find the set of values of k for which $\cos(2x - k \sin(x))$ has two distinct real roots.	
		•••••
		•••••
		•••••
		••••••
		•••••
		•••••

3 The variables t and x are related by the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{\mathrm{d}x}{\mathrm{d}t} + x = t^2 + 1.$$

Find the general solution for x in terms of t .	

······/00\·····

The diagram shows the curve with equation $y = 2^x$ for $0 \le x \le 1$, together with a set of N rectangles each of width $\frac{1}{N}$.

(a) By considering the sum of the areas of these rectangles, show that $\int_0^1 2^x dx < U_N$, where $U_N = \frac{2^{\frac{1}{N}}}{N(2^{\frac{1}{N}}-1)}$.

$$U_N = \frac{2^{\frac{1}{N}}}{N(2^{\frac{1}{N}} - 1)}.$$
 [4]

Use									
			•••••	•••••					
		•••••	•••••	•••••			• • • • • • • • • • • • • • • • • • • •	•••••	
••••	•••••								 •••••
•••••		•••••	•••••	•••••	••••••		••••••	•••••	
••••				•••••					
••••		•••••	••••••	••••••	••••••		• • • • • • • • • • • • • • • • • • • •	•••••	
••••			•••••						
₹ine	d the leas	t value of	N such t	that U_{\cdots}	-L <	10^{-4}			
		. ,		N	Z_N				
	•••••								 •••••
		••••••	•••••					•••••	
	•••••	•							

5 The variables x and y are such that y = 0 when x = 0 and

$$(x+1)y + (x+y+1)^3 = 1.$$

Show that $\frac{dy}{dx} = -\frac{3}{4} \text{ w}$	nen x = 0.	
		•••••
		•••••
Find the Maclaurin's se	ries for y up to and including the term in x^2 .	
ind the Maclaurin's se	ries for y up to and including the term in x^2 .	
Find the Maclaurin's se	ries for y up to and including the term in x^2 .	
Find the Maclaurin's se	ries for y up to and including the term in x^2 .	
Find the Maclaurin's se	ries for y up to and including the term in x^2 .	
ind the Maclaurin's se	ries for y up to and including the term in x^2 .	
Find the Maclaurin's se	ries for y up to and including the term in x^2 .	
Find the Maclaurin's se	ries for y up to and including the term in x^2 .	
Find the Maclaurin's se	ries for y up to and including the term in x^2 .	
Find the Maclaurin's se	ries for y up to and including the term in x^2 .	

6 Use the substitution y = vx to find the solution of the differential equation

$$x\frac{\mathrm{d}y}{\mathrm{d}x} = y + \sqrt{9x^2 + y^2}$$

u.
for which $y = 0$ when $x = 1$. Give your answer in the form $y = f(x)$, where $f(x)$ is a polynomial in x .

Page 10 of 14	9231_s22_qp_21

7 (a) Use de Moivre's theorem to show that

$\cos^2\theta$	
$\csc 7\theta = \frac{\csc' \theta}{7 \csc^6 \theta - 56 \csc^4 \theta + 112 \csc^2 \theta - 64}.$	1
$/ \operatorname{cosec}^{\circ} \theta - 56 \operatorname{cosec}^{\circ} \theta + 112 \operatorname{cosec}^{\circ} \theta - 64$ [6]]

(b) Hence obtain the roots of the equation

7	14.6	$112x^4 -$	2242	1 1 2 0	_ ^
x' —	$14x^{\circ} +$	$112x^{-}$	·224x2	± 128	= ()

in the form $\csc q\pi$, where q is rational.	[5]
765.	

8 (a) Find the value of a for which the system of equations

$$3x + ay = 0,$$

$$5x - y = 0,$$

$$x + 3y + 2z = 0,$$

does not have a unique solution.	[2]
	•••••
	•••••
	•••••

The matrix **A** is given by

$$\mathbf{A} = \begin{pmatrix} 3 & 0 & 0 \\ 5 & -1 & 0 \\ 1 & 3 & 2 \end{pmatrix}.$$

(b)	Find a matrix P and a diagonal matrix D such that $A^2 = PDP^{-1}$.	[7]
		•••••
		•••••
		••••••
		•••••
	Z & Z	