(a) Sketch the curve with equation $y = \frac{x+1}{x-1}$.

[2]

(b) Sketch the curve with equation $y = \frac{|x|+1}{|x|-1}$ and find the set of values of x for which $\frac{|x|+1}{|x|-1} < -2$.

Find the value of $\alpha^2 + \beta^2 + \gamma^2$.		
	 •••••	
	 •••••	
	 •••••	
	 •••••	
	 •••••	 •••••
	 ••••••	 •••••
	 •••••	

(b)	Show that the matrix ($\begin{pmatrix} \alpha & \beta \\ \alpha & 1 & \gamma \\ \beta & \gamma & 1 \end{pmatrix}$	is singular.	[4]
		•••••		
		•••••		
		•••••		
		•••••		
		•••••		
		•••••		
		•••••		
		•••••		
		•••••		
		•••••		
		••••••		
		••••••		
		•••••		
		•••••		
		•••••		
		•••••		

3	A curve C has equation	$y = \frac{ax^2 + x - 1}{x - 1}$	-, where a is a positive constant.
---	------------------------	----------------------------------	--------------------------------------

						• • • • • • • • • • • • • • • • • • • •
	•••••					
	•••••			•••••	•••••	
Show that there is no	point on C for	or which 1 <	y < 1+4a.			
Show that there is no	point on C fo	or which 1 <	<i>y</i> < 1+4 <i>a</i> .			
Show that there is no	point on C fo	or which 1 <	y < 1+4a.			
Show that there is no	point on C fo	or which 1 <	y < 1+4a.			
Show that there is no	point on C fo	or which 1 <	<i>y</i> < 1+4 <i>a</i> .			
Show that there is no	point on C fo	or which 1 <	y < 1+4a.			
Show that there is no	point on C fo	or which 1 <	y < 1+4a.			
Show that there is no	point on C fo	or which 1 <	y < 1+4a.			
Show that there is no	point on C fo	or which 1 <	y < 1+4a.			
Show that there is no	point on C fo	or which 1 <	y < 1+4a.			
Show that there is no	point on C fo	or which 1 <	y < 1+4a.			
Show that there is no	point on C fo	or which 1 <	y < 1+4a.			
Show that there is no	point on C fo	or which 1 <	y < 1+4a.			
Show that there is no	point on C fo	or which 1 <	y < 1+4a.			
Show that there is no	point on C fo	or which 1 <	y < 1+4a.			
Show that there is no	point on C fo	or which 1 <	y < 1+4a.			
Show that there is no	point on C fo		y < 1+4a.			

Page 5 of 14

9231	s22	an	13
7271	24	92	T)

c)	Sketch <i>C</i> . You do not need to find the coordinates of the intersections with the axes. [3]

4	Let	<i>u</i> =	e^{rx}	e^{2x}	$-2e^x$	$+1^{-}$).
•	LCt	u —	٠,	·	20	1 1	,

) Using the method of differences, or otherwise, find $\sum_{r=1}^{n} u_r$ in terms of n and x .	[3
	,
	• • • • • •
Deduce the set of non-zero values of x for which the infinite series	
$u_1 + u_2 + u_3 + \dots$	
is convergent and give the sum to infinity when this exists.	[3

)	State the type of the geometrical transformation in the x – y plane represented by \mathbf{A} .	• • • • • •
(b)	Prove by mathematical induction that, for all positive integers n , $\mathbf{A}^n = \begin{pmatrix} 1 & na \\ 0 & 1 \end{pmatrix}.$	
		• • • • • • •

Let $\mathbf{B} = \begin{pmatrix} b & b \\ a^{-1} & a^{-1} \end{pmatrix}$, where *b* is a positive constant.

1	nd the equations of the invariant lines, through presented by $\mathbf{A}^{n}\mathbf{B}$.	
••••		
• • • •		
• • • •		
••••		
• • • • •		
• • • •		
••••		
••••		
••••		
	60	

6 The curve C has Cartesian equation $x^2 + xy + y^2 = a$, where a is a positive constant.

(a)

Show that the polar equation of C is $r^2 = \frac{2a}{2 + \sin 2\theta}$.	[3]

(b) Sketch the part of C for $0 \le \theta \le \frac{1}{4}\pi$. [2]

The region *R* is enclosed by this part of *C*, the initial line and the half-line $\theta = \frac{1}{4}\pi$.

(c) It is given that $\sin 2\theta$ may be expressed as $\frac{2 \tan \theta}{1 + \tan^2 \theta}$. Use this result to show that the area of R is

$$\frac{1}{2}a\int_0^{\frac{1}{4}\pi} \frac{1+\tan^2\theta}{1+\tan\theta+\tan^2\theta} d\theta$$

and use the substitution $t = \tan \theta$ to find the exact value of this area.	[8]
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
11-1/00	•••

7 The position vectors of the points A, B, C, D are

$7\mathbf{i} + 4\mathbf{j} - \mathbf{k}$,	$11\mathbf{i} + 3\mathbf{j}$,	$2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k},$	$2\mathbf{i} + 7\mathbf{j} + \lambda\mathbf{k}$
--	--------------------------------	--	---

respectively.

Given that the shortes $\lambda^2 - 5\lambda + 4 = 0$.					
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		
		•••••		••••••	
			•••••		•••••
		••••			
		•••••			
		• • • • • • • • • • • • • • • • • • • •			
		•••••	•••••	•••••	
	•••••	•••••	•••••	•••••	•••••
	•••••				
	•••••			•••••	
				•••••	•••••

Let Π_1	be the plane ABD when $\lambda = 1$.	
Let Π_2	be the plane ABD when $\lambda = 4$.	
(b) (i)	Write down an equation of Π_1 , giving your answer in the form $\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$.	[2]
(ii)	Find an equation of Π_2 , giving your answer in the form $ax + by + cz = d$.	[4]
		•••••
