1 Let a be a positive constant.

(a)	Use the method of differences to find	$\sum_{i=1}^{n} \frac{1}{(ar+1)(ar+a+1)}$ in terms of n and a . [4]

(b) Find the value of a for which $\sum_{r=1}^{\infty} \frac{1}{(ar+1)(ar+a+1)} = \frac{1}{6}.$ [3]

2 The points A, B, C have position vectors

$$4i-4j+k$$
, $-4i+3j-4k$, $4i-j-2k$,

respectively, relative to the origin O.

r iiiu t	the equat	1011 01 t	ne piane	ABC,	giving .	your an	SWCI II	i tiic io	1111 UX	1 <i>0y</i> 1 0	.z — u .	
	•••••	•••••										•••••
	•••••											•••••
• • • • • • • •						••••••	•	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••
	•••••					•••••		•••••	•••••	•••••	•••••	•••••
	•••••		••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	•••••	••••••	••••••
	•••••					•••••		•••••	•••••	•••••	•••••	•••••
						••••••		•••••		•••••		
				••••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••	•••••	•••••	•••••
					6							

υ,	Find the perpendicular distance from O to the plane ABC .
(:)	The point D has position vector $2\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$.
	Find the coordinates of the point of intersection of the line <i>OD</i> with the plane <i>ABC</i> .
	This the coordinates of the point of intersection of the line OD with the plane ABC.

3 The sequence of positive numbers u_1, u_2, u_3, \dots is such that $u_1 > 4$ and, for $n \ge 1$,

$$u_{n+1} = \frac{u_n^2 + u_n + 12}{2u_n}.$$

							 	•••••	•••••	
					•••••					
							 	• • • • • • • • • • • • • • • • • • • •		
	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	 •••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
							 			••••
•••••							 	•••••	•••••	
	••••••	•••••	••••••		••••••	•••••	 •••••	•••••	•••••	
							 	•••••		
	•••••						 			
	• • • • • • • • • • • • • • • • • • • •									

4 The cubic equation $2x^3 + 5x^2 - 6 = 0$ has roots α , β , γ .

(a)	Find a pubic equation whose roots are	1	1	1
(a)	Find a cubic equation whose roots are	$\overline{\alpha^3}$,	$\overline{\beta^3}$,	γ^3

[3]

 	•••••	 	

(b)	Find the value of $\frac{1}{\alpha^6} + \frac{1}{\beta^6} + \frac{1}{\gamma^6}$.	[3

	•••••

-----/oo\------

- 5 The curve C has equation $y = \frac{2x^2 x 1}{x^2 + x + 1}$.
 - (a) Show that C has no vertical asymptotes and state the equation of the horizontal asymptote of C. **(b)** Find the coordinates of the stationary points on *C*. [4]

00

[3]

(c) Sketch C, stating the coordinates of the intersections with the axes.

(d) Sketch the curve with equation $y = \left| \frac{2x^2 - x - 1}{x^2 + x + 1} \right|$ and state the set of values of k for which $\left| \frac{2x^2 - x - 1}{x^2 + x + 1} \right| = k$ has 4 distinct real solutions. [2]

- 6 The curve C has polar equation $r^2 = \tan^{-1}(\frac{1}{2}\theta)$, where $0 \le \theta \le 2$.
 - (a) Sketch C and state, in exact form, the greatest distance of a point on C from the pole. [3]

(b) Find the exact value of the area of the region bounded by C and the half-line $\theta=2$. [5]

7 The matrix **A** is given by $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & k & 6 \\ 7 & 8 & 9 \end{pmatrix}$.

(a)	Find the set of values of k for which A is non-singular.	[3]
(b)	Given that A is non-singular, find, in terms of k , the entries in the top row of A^{-1} .	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

·····		•••••	 	• • • • • • • • • • • • • • • • • • • •	•••••	
,	,		 			
			 ••••••	• • • • • • • • • • • • • • • • • • • •		
			 			•
			 	•••••		

Find the set of values of k for which the transformation in the x - y plane represented by $\begin{pmatrix} 2 & 1 \\ k & 4 \end{pmatrix}$ how distinct invariant lines through the origin.
/00\
1-(2)-1