Farmer A grows apples of a certain variety. Each tree produces 14.8 kg of apples, on average, per year. Farmer B grows apples of the same variety and claims that his apple trees produce a higher mass of apples per year than Farmer A's trees. The masses of apples from Farmer B's trees may be assumed to be normally distributed.

A random sample of 10 trees from Farmer B is chosen. The masses, x kg, of apples produced in a year are summarised as follows.

	$\sum x = 152.0$	$\sum x^2 = 2313.0$		
Test, at the 5% significance leve	el, whether Farm	er B's claim is justi	fied.	[6]
	III 38	4111		
	6			

A company is developing a new flavour of chocolate by varying the quantities of the ingredients. A random selection of 9 flavours of chocolate are judged by two tasters who each give marks out of 100 to each flavour of chocolate.

Chocolate	A	В	С	D	E	F	G	Н	I
Taster 1	72	86	75	92	98	79	87	60	62
Taster 2	84	72	74	95	85	87	82	75	68

Carry out a Wilcoxon matched-pairs signed-rank test at the 10% significance level to investigate whether, on average, there is a difference between marks awarded by the two tasters. [7]							

3 The heights, x m, of a random sample of 50 adult males from country A were recorded. The heights, y m, of a random sample of 40 adult males from country B were also recorded. The results are summarised as follows.

$$\Sigma x = 89.0$$
 $\Sigma x^2 = 159.4$ $\Sigma y = 67.2$ $\Sigma y^2 = 113.1$

Find a 95% confidence interval for the A and adult males from country B.	the difference between the mean heights of adult males from country [8]

4 X is a discrete random variable which takes the values $0, 2, 4, \ldots$. The probability generating function of X is given by

$$G_X(t) = \frac{1}{3 - 2t^2}.$$

 		 •••••	•••••
 	•••••	 •••••	•••••
 	•••••	 •••••	•••••
 		 •••••	
 •••••	•••••	 •••••	•••••
		•••••	•••••

 	•••••					
 •••••		•••••			•••••	
 •••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	
 		• • • • • • • • • • • • • • • • • • • •				
 •••••			00			

5	Chai packs china mugs into cardboard boxes. Chai's manager suspects that breakages occutimes and that the number of breakages may follow a Poisson distribution. He takes a surfollow of observations and finds that the number of breakages in a one-hour period has a mean standard deviation of 1.5.	mall sample
	(a) Explain how this information tends to support the manager's suspicion.	[2]

Explain how this information tends to support the manager's suspicion.	[2]

The manager now takes a larger sample and claims that the numbers of breakages in a one-hour period follow a Poisson distribution. The numbers of breakages in a random sample of 180 one-hour periods are summarised in the following table.

Number of breakages	0	1	2	3	4	5	6	7 or more
Frequency	21	33	46	31	23	16	10	0

The mean number of breakages calculated from this sample is 2.5.

(b)	Use the data from this larger sample to carry out a goodness of fit test, at the 10% significance level, to test the claim. [8]

6 The continuous random variable *X* has probability density function f given by

$$f(x) = \begin{cases} \frac{1}{8} & 0 \le x < 1, \\ \frac{1}{28}(8-x) & 1 \le x \le 8, \\ 0 & \text{otherwise.} \end{cases}$$

(a)	Find the cumulative distribution function of X .	[3]
(b)	Find the value of the constant a such that $P(X \le a) = \frac{5}{7}$.	[3]

The random variable Y is given by $Y = \sqrt[3]{X}$. (c) Find the probability density function of Y. [5] 00