

A uniform lamina ABCD consists of two isosceles triangles ABD and BCD. The diagonals of ABCD meet at the point O. The length of AO is AO

Find the distance of the centre of mass of the lamina from DB . [3]]
	•
223	

A particle P of mass 2 kg is attached to the other end of the string. The string lies along a line of greates slope of the plane with the particle below the level of O . The particle is projected with speed $\sqrt{2}$ ms directly down the plane from the position where OP is equal to the natural length of the string.		
Find the maximum extension of the string during the subsequent motion.	[5	

Particles A and B, of masses 3m and m respectively, are connected by a light inextensible string of length a that passes through a fixed smooth ring R. Particle B hangs in equilibrium vertically below the ring. Particle A moves in horizontal circles on a smooth horizontal surface with speed $\frac{2}{5}\sqrt{ga}$. The angle between AR and BR is θ (see diagram). The normal reaction between A and the surface is $\frac{12}{5}mg$.

$\cot \cos \theta$.	

4

A particle of mass m is attached to one end of a light inextensible string of length a. The other end of the string is attached to a fixed point O. The particle is initially held with the string taut at the point A, where OA makes an angle θ with the downward vertical through O. The particle is then projected with speed u perpendicular to OA and begins to move upwards in part of a vertical circle. The string goes slack when the particle is at the point B where angle AOB is a right angle. The speed of the particle when it is at B is $\frac{1}{2}u$ (see diagram).

Find the tension in the string at A , giving your answer in terms of m and g .	[8]
	•••••
	•••••
/20	
422	

Find an expression for v in terms of t , while P is moving upwards.

The displacement of P from O is x m at time t s.

		••••••
		•••••
		•••••
Find, correct to 3 significan	ant figures, the greatest height above O reached by P .	
Find, correct to 3 significat	Int figures, the greatest height above O reached by P .	
Find, correct to 3 significan	Int figures, the greatest height above O reached by P .	
Find, correct to 3 significat	Int figures, the greatest height above O reached by P .	
Find, correct to 3 significat	nt figures, the greatest height above O reached by P.	
Find, correct to 3 significat	nt figures, the greatest height above O reached by P.	
Find, correct to 3 significan	nt figures, the greatest height above O reached by P.	
Find, correct to 3 significan	nt figures, the greatest height above O reached by P.	
Find, correct to 3 significan	nt figures, the greatest height above O reached by P.	
Find, correct to 3 significan	nt figures, the greatest height above O reached by P.	
Find, correct to 3 significant	nt figures, the greatest height above O reached by P.	
Find, correct to 3 significan	nt figures, the greatest height above O reached by P.	
Find, correct to 3 significan	nt figures, the greatest height above O reached by P.	
Find, correct to 3 significant	nt figures, the greatest height above O reached by P.	
Find, correct to 3 significant	nt figures, the greatest height above O reached by P.	
Find, correct to 3 significan	nt figures, the greatest height above O reached by P.	

Two uniform smooth spheres A and B of equal radii have masses m and km respectively. Sphere A is moving with speed u on a smooth horizontal surface when it collides with sphere B which is at rest. Immediately before the collision, A's direction of motion makes an angle θ with the line of centres (see diagram). The coefficient of restitution between the spheres is $\frac{1}{3}$.

Show that the speed of B after the collision	3(1+k)	

70% of the total kinetic energy of the spheres is lost as a result of the collision.

	 •••••	
•••••	 •••••	
	•••••	

A particle P is projected with speed u at an angle θ above the horizontal from a point O on a horizontal

)	Use the equation of the trajectory given in the List of formulae (MF19), together with the condition $y = 0$, to establish an expression for the range R in terms of u , θ and g .
)	Deduce an expression for the maximum height H , in terms of u , θ and g .
ı	Deduce an expression for the maximum height H , in terms of u , θ and g .
	Deduce an expression for the maximum height H , in terms of u , θ and g .
	Deduce an expression for the maximum height H , in terms of u , θ and g .
	Deduce an expression for the maximum height H , in terms of u , θ and g .
	Deduce an expression for the maximum height H , in terms of u , θ and g .
	Deduce an expression for the maximum height H , in terms of u , θ and g .
	Deduce an expression for the maximum height H , in terms of u , θ and g .
	Deduce an expression for the maximum height H , in terms of u , θ and g .
	Deduce an expression for the maximum height H , in terms of u , θ and g .
	Deduce an expression for the maximum height H , in terms of u , θ and g .

given that $R = \frac{4H}{\sqrt{3}}$.
Show that $\theta = 60^{\circ}$. [1]
given also that $u = \sqrt{40} \mathrm{ms^{-1}}$.
Find, by differentiating the equation of the trajectory or otherwise, the set of values of x for which
the direction of motion makes an angle of less than 45° with the horizontal. [4]