A uniform lamina ABCD consists of two isosceles triangles ABD and BCD. The diagonals of ABCD meet at the point O. The length of AO is | Find the distance of the centre of mass of the lamina from DB . [3] |] | |---|---| | | | | | • | 223 | | | A particle P of mass 2 kg is attached to the other end of the string. The string lies along a line of greates slope of the plane with the particle below the level of O . The particle is projected with speed $\sqrt{2}$ ms directly down the plane from the position where OP is equal to the natural length of the string. | | | |---|----|--| | Find the maximum extension of the string during the subsequent motion. | [5 | Particles A and B, of masses 3m and m respectively, are connected by a light inextensible string of length a that passes through a fixed smooth ring R. Particle B hangs in equilibrium vertically below the ring. Particle A moves in horizontal circles on a smooth horizontal surface with speed $\frac{2}{5}\sqrt{ga}$. The angle between AR and BR is θ (see diagram). The normal reaction between A and the surface is $\frac{12}{5}mg$. | $\cot \cos \theta$. | | |----------------------|--|
 | | |------|--| |
 | | |
 | | | | | |
 | | |
 | | |
 | | | | | | | | |
 | | |
 | | | | | | | | |
 | | |
 | | | | | | | | | | | |
 | | | | | | | | |
 | | |
 | | | | | | | | |
 | | |
 | | |
 | | | | | | | | | | | |
 | | | | | | | | 4 A particle of mass m is attached to one end of a light inextensible string of length a. The other end of the string is attached to a fixed point O. The particle is initially held with the string taut at the point A, where OA makes an angle θ with the downward vertical through O. The particle is then projected with speed u perpendicular to OA and begins to move upwards in part of a vertical circle. The string goes slack when the particle is at the point B where angle AOB is a right angle. The speed of the particle when it is at B is $\frac{1}{2}u$ (see diagram). | Find the tension in the string at A , giving your answer in terms of m and g . | [8] | |--|-------| | | ••••• | ••••• | | /20 | | | 422 | | | Find an expression for v in terms of t , while P is moving upwards. | |---| The displacement of P from O is x m at time t s. | | | •••••• | |--------------------------------|---|--------| ••••• | | | | ••••• | Find, correct to 3 significan | ant figures, the greatest height above O reached by P . | | | Find, correct to 3 significat | Int figures, the greatest height above O reached by P . | | | Find, correct to 3 significan | Int figures, the greatest height above O reached by P . | | | Find, correct to 3 significat | Int figures, the greatest height above O reached by P . | | | Find, correct to 3 significat | nt figures, the greatest height above O reached by P. | | | Find, correct to 3 significat | nt figures, the greatest height above O reached by P. | | | Find, correct to 3 significan | nt figures, the greatest height above O reached by P. | | | Find, correct to 3 significan | nt figures, the greatest height above O reached by P. | | | Find, correct to 3 significan | nt figures, the greatest height above O reached by P. | | | Find, correct to 3 significan | nt figures, the greatest height above O reached by P. | | | Find, correct to 3 significant | nt figures, the greatest height above O reached by P. | | | Find, correct to 3 significan | nt figures, the greatest height above O reached by P. | | | Find, correct to 3 significan | nt figures, the greatest height above O reached by P. | | | Find, correct to 3 significant | nt figures, the greatest height above O reached by P. | | | Find, correct to 3 significant | nt figures, the greatest height above O reached by P. | | | Find, correct to 3 significan | nt figures, the greatest height above O reached by P. | | Two uniform smooth spheres A and B of equal radii have masses m and km respectively. Sphere A is moving with speed u on a smooth horizontal surface when it collides with sphere B which is at rest. Immediately before the collision, A's direction of motion makes an angle θ with the line of centres (see diagram). The coefficient of restitution between the spheres is $\frac{1}{3}$. | Show that the speed of B after the collision | 3(1+k) | | |--|--------|--| 70% of the total kinetic energy of the spheres is lost as a result of the collision. | |
 | | |-------|-----------|--| | | | | | |
 | | | | | | | |
••••• | | | |
 | | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | |
 | | | |
 | | | | | | | |
 | | | | | | | ••••• |
••••• | | | |
 | | | | | | | |
 | | | | | | | | | | | |
 | | | | | | | |
 | | | | | | | | ••••• | | | |
 | | | | | | | |
 | | | | | | | | | | A particle P is projected with speed u at an angle θ above the horizontal from a point O on a horizontal |) | Use the equation of the trajectory given in the List of formulae (MF19), together with the condition $y = 0$, to establish an expression for the range R in terms of u , θ and g . | |---|--|) | Deduce an expression for the maximum height H , in terms of u , θ and g . | | ı | Deduce an expression for the maximum height H , in terms of u , θ and g . | | | Deduce an expression for the maximum height H , in terms of u , θ and g . | | | Deduce an expression for the maximum height H , in terms of u , θ and g . | | | Deduce an expression for the maximum height H , in terms of u , θ and g . | | | Deduce an expression for the maximum height H , in terms of u , θ and g . | | | Deduce an expression for the maximum height H , in terms of u , θ and g . | | | Deduce an expression for the maximum height H , in terms of u , θ and g . | | | Deduce an expression for the maximum height H , in terms of u , θ and g . | | | Deduce an expression for the maximum height H , in terms of u , θ and g . | | | Deduce an expression for the maximum height H , in terms of u , θ and g . | | given that $R = \frac{4H}{\sqrt{3}}$. | |--| | Show that $\theta = 60^{\circ}$. [1] | | | | | | | | | | | | | | | | given also that $u = \sqrt{40} \mathrm{ms^{-1}}$. | | Find, by differentiating the equation of the trajectory or otherwise, the set of values of x for which | | the direction of motion makes an angle of less than 45° with the horizontal. [4] |