Find an expression for v in terms	of t	[:
i ma an expression for v in terms	01 1.	L·

A hollow hemispherical bowl of radius a has a smooth inner surface and is fixed with its axis vertical.

find x in terms of a .	[6

2

	librium a distance x vertically below A .
a)	Show that $k = \frac{4a}{x - a}$.
t th	additional particle, of mass $2m$, is now attached to P and the combined particle is released from r e original equilibrium position of P . When the combined particle has descended a distance $\frac{1}{3}a$,
pee	d is $\frac{1}{3}\sqrt{ga}$.
b)	Find x in terms of a .

3

4

A uniform solid circular cone has vertical height kh and radius r. A uniform solid cylinder has height h and radius r. The base of the cone is joined to one of the circular faces of the cylinder so that the axes of symmetry of the two solids coincide (see diagram, which shows a cross-section). The cone and the cylinder are made of the same material.

1S	$\frac{x^2 + 4k + 6}{4(3+k)}$	/ .				
•••••				 	 	
			•••••	 	 	
•••••				 	 	
•••••		•••••		 	 	•••••
•••••				 	 	

The solid is placed on a plane that is inclined to the horizontal at an angle θ . The base of the cylinder is in contact with the plane. The plane is sufficiently rough to prevent sliding. It is given that 3h = 2r and that the solid is on the point of toppling when $\tan \theta = \frac{4}{3}$.

b)	Find the value of k .	[3]

The speed of P when it is at A is u and the speed of P when it is at B is \sqrt{c} at A and B are T_A and T_B respectively. It is given that $T_A = 7T_B$.	\overline{ag} . The tensions in the
Find the value of θ and find an expression for u in terms of a and g .	

Page 7 of 11	9231_s21_qp_31

Two uniform smooth spheres A and B of equal radii each have mass m. The two spheres are each moving with speed u on a horizontal surface when they collide. Immediately before the collision, A's direction of motion makes an angle α with the line of centres, and B's direction of motion makes an angle β with the line of centres (see diagram). The coefficient of restitution between the spheres is $\frac{1}{3}$ and $2\cos\beta = \cos\alpha$.

SHOV	w mai m	ie uneci	1011 01 111	011011 01	A arter	the con	181011 18	perpendic	zuiai io ii	e line of o	Lentres
•••••					•••••	• • • • • • • • • • • • • • • • • • • •					
											• • • • • • • • • • • • • • • • • • • •
				•••••		•••••	•••••				
						•••••					
	•••••	•••••		•••••		•••••					
						•••••					
		•••••			•••••	•••••					
		•••••									
					10						

The total kinetic energy of the spheres after the collision is $\frac{3}{4}mu^2$. **(b)** Find the value of α . [4] 00

a)	Find the value of H .	[5

•••••
••••••
•••••
 ••••••
••••••