1 (a)	Find a and b such that			
	$z^8 - iz^5 - z^3 + i = (z^5 - a)(z^3 - b).$	[1]		
(b)	Hence find the roots of			
	$z^8 - iz^5 - z^3 + i = 0,$			
	giving your answers in the form $re^{i\theta}$, where $r > 0$ and $0 \le \theta \le 2\pi$.	[6]		

	•••••

3

The diagram shows the curve $y = \frac{x}{2x^2 - 1}$ for $x \ge 1$, together with a set of N - 1 rectangles of unit width.

(a) By considering the sum of the areas of these rectangles, show that

$\sum_{r=1}^{\infty} \frac{1}{2r^2 - 1} < \frac{1}{4} \ln(2N)$	V -1)+1.	[/]

	Page 4 of 14	9231_	s21_c	qp_23
		••••••	•••••	•••••
			•••••	
		•••••		
	N		• • • • • • • • • • • • • • • • • • • •	
(b)	Use a similar method to find, in terms of N , a lower bound for $\sum_{r=1}^{N} \frac{r}{2r^2 - 1}$.			[3]
	$\frac{1}{r-1}$ $2r-1$			
		•••••		
		••••••	•••••	
		•••••		
			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		•••••		
		•••••	•••••	•••••

4	By considering the binomial expansions of $\left(z + \frac{1}{z}\right)^5$ and $\left(z - \frac{1}{z}\right)^5$, where $z = \cos\theta + i\sin\theta$, use de Moivre's theorem to show that
	$\tan^5\theta = \frac{\sin 5\theta - a\sin 3\theta + b\sin \theta}{\cos 5\theta + a\cos 3\theta + b\cos \theta},$
	where a and b are integers to be determined. [7]

5 The variables x and y are related by the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} - 3y = 4\mathrm{e}^{-x}.$$

Find the equation.	value of the const	tant k such that	$y = kxe^{-x}$ is a	particular integra	al of the differe
••••••					
••••••					
••••••					
••••••					
••••••					
•••••					
Find the s	olution of the diffe	erential equation	for which $y =$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \text{ when } x =$	0.

	$2\sinh^2 x = \cosh 2x - 1.$	[3
)	Find the solution to the differential equation $\frac{dy}{dx} + y \coth x = 4 \sinh x$	
)	$\frac{\mathrm{d}y}{\mathrm{d}x} + y \coth x = 4 \sinh x$	[7
)		[7]
	$\frac{\mathrm{d}y}{\mathrm{d}x} + y \coth x = 4 \sinh x$	[7]
	$\frac{\mathrm{d}y}{\mathrm{d}x} + y \coth x = 4 \sinh x$	[7]
	$\frac{dy}{dx} + y \coth x = 4 \sinh x$ for which $y = 1$ when $x = \ln 3$.	[7]
	$\frac{dy}{dx} + y \coth x = 4 \sinh x$ for which $y = 1$ when $x = \ln 3$.	[7]
	$\frac{dy}{dx} + y \coth x = 4 \sinh x$ for which $y = 1$ when $x = \ln 3$.	[7]
	$\frac{dy}{dx} + y \coth x = 4 \sinh x$ for which $y = 1$ when $x = \ln 3$.	
	$\frac{dy}{dx} + y \coth x = 4 \sinh x$ for which $y = 1$ when $x = \ln 3$.	[7]
	$\frac{dy}{dx} + y \coth x = 4 \sinh x$ for which $y = 1$ when $x = \ln 3$.	[7]
	$\frac{dy}{dx} + y \coth x = 4 \sinh x$ for which $y = 1$ when $x = \ln 3$.	[7]
	$\frac{dy}{dx} + y \coth x = 4 \sinh x$ for which $y = 1$ when $x = \ln 3$.	[7]
	$\frac{dy}{dx} + y \coth x = 4 \sinh x$ for which $y = 1$ when $x = \ln 3$.	[7]
)	$\frac{dy}{dx} + y \coth x = 4 \sinh x$ for which $y = 1$ when $x = \ln 3$.	[7

Page 10 of 14

9231_s21_qp_23

(a)	Find the exact value of I_1 , expressing your answer in logarithmic form.	
		•••••
		•••••
		••••••
		•••••
(b)	By considering $\frac{d}{dx} \left(x \left(4 + x^2 \right)^{-\frac{1}{2}n} \right)$, or otherwise, show that $4nI = \frac{3}{2} \left(\frac{2}{2} \right)^n + (n-1)I$	
(b)	By considering $\frac{d}{dx}(x(4+x^2)^{-\frac{1}{2}n})$, or otherwise, show that $4nI_{n+2} = \frac{3}{2}(\frac{2}{5})^n + (n-1)I_n.$	
(b)		

/00

8 (a) Find the value of a for which the system of equations

$$13x + 18y - 28z = 0,$$

$$-4x - ay + 8z = 0,$$

$$2x + 6y - 5z = 0,$$

does not have a unique solution.				

/2\

The matrix A is given by

$$\mathbf{A} = \begin{pmatrix} 13 & 18 & -28 \\ -4 & -1 & 8 \\ 2 & 6 & -5 \end{pmatrix}.$$

(b)	Find the eigenvalue of A corresponding to the eigenvector $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.	[1]
(c)	Find a matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$.	[8]
		••••
		••••
		••••
		••••

(00)