1 (a) Given that a is an integer, show that the system of equations

$$ax + 3y + z = 14,$$

 $2x + y + 3z = 0,$
 $-x + 2y - 5z = 17,$

•••••
 •••••
•••••

2 The variables x and y are related by the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 3\frac{\mathrm{d}y}{\mathrm{d}x} + 2y = 2x + 1.$$

Find the general solution for y in terms of x .	[6]
tate an approximate solution for large positive values of x .	[1]
(2)	

3

The diagram shows the curve with equation $y = x^3$ for $0 \le x \le 1$, together with a set of *n* rectangles of width $\frac{1}{n}$.

(a) By considering the sum of the areas of these rectangles, show that $\int_0^1 x^3 dx < U_n$, where

$U_n = \left(\frac{n+1}{2n}\right)^2.$	[4]

	find, in terms of n , a lower bound L_n for $\int_0^1 x^3 dx$.	
Find the least value of n s	$ \text{ uch that } U_n - L_n < 10^{-3}. $	
Find the least value of n s	such that $U_n - L_n < 10^{-3}$.	
	such that $U_n - L_n < 10^{-3}$.	
Find the least value of <i>n</i> s	$ \text{ uch that } U_n - L_n < 10^{-3}. $	
	$ \text{ uch that } U_n - L_n < 10^{-3}. $	
	$ \text{ uch that } U_n - L_n < 10^{-3}. $	
	$ \text{ uch that } U_n - L_n < 10^{-3}. $	

4 Find the solution of the differential equation

$$\sin\theta \frac{\mathrm{d}y}{\mathrm{d}\theta} + y = \tan\frac{1}{2}\theta,$$

$d\theta$
where $0 < \theta < \pi$, given that $y = 1$ when $\theta = \frac{1}{2}\pi$. Give your answer in the form $y = f(\theta)$. [9]
[You may use without proof the result that $\int \csc\theta d\theta = \ln \tan \frac{1}{2}\theta$.]
•
700

Page 6 of 14	9231_s21_qp_21
422	

a)	State the sum of the series $z+z^2+z^3++z^n$, for $z \neq 1$.	[1]
b)	Given that z is an nth root of unity and $z \neq 1$, deduce that $1 + z + z^2 + + z^{n-1} = 0$.	[2]
)	Given instead that $z = \frac{1}{3}(\cos\theta + i\sin\theta)$, use de Moivre's theorem to show that	
	$\sum_{m=1}^{\infty} 3^{-m} \cos m\theta = \frac{3\cos\theta - 1}{10 - 6\cos\theta}.$	[7]
	TCODI	

Page 8 of 14	9231_s21_qp_21

6 The matrix **A** is given by

$$\mathbf{A} = \begin{pmatrix} 5 & -\frac{22}{3} & 8 \\ 0 & -6 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

sonal matrix D such that $A^2 = PDP^{-1}$.	
	•••••

(a)	It is given that $y = \operatorname{sech}^{-1}\left(x + \frac{1}{2}\right)$.
	Express $\cosh y$ in terms of x and hence show that $\sinh y \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{\left(x + \frac{1}{2}\right)^2}$. [3]
(b)	Find the first three terms in the Maclaurin's series for sech $-1\left(x+\frac{1}{2}\right)$ in the form $\ln a + bx + cx^2$,
	where a , b and c are constants to be determined. [7]

8 The curve C has parametric equations

$$x = 2 \cosh t$$
, $y = \frac{3}{2}t - \frac{1}{4}\sinh 2t$, for $0 \le t \le 1$.

(a) F	and show that $\frac{dy}{dt} = \frac{dy}{dt}$	$1 - \sinh^2 t$.	[3]
The ar	rea of the surface generated	when C is rotated through 2π radians about the	the x -axis is denoted by A .
(b) (i	i) Show that $A = \pi \int_0^1 \left(\frac{3}{2}t\right)^2$	$-\frac{1}{4}\sinh 2t\Big)(1+\cosh 2t)\mathrm{d}t.$	[4]

•••••	•••••