(a) Show that

	$\tan(r+1) - \tan r = \frac{1}{\cos^2 x}$	os(r+1)cosr	
••••••			
$a_r = \frac{1}{\cos(r+1)\cos r}.$ Use the method of dis	fferences to find $\sum_{r=1}^{n} u_r$.		
	fferences to find $\sum_{r=1}^{n} u_r$.		
	fferences to find $\sum_{r=1}^{n} u_r$.		
	fferences to find $\sum_{r=1}^{n} u_r$.		
	fferences to find $\sum_{r=1}^{n} u_r$.		
	fferences to find $\sum_{r=1}^{n} u_r$.		
	fferences to find $\sum_{r=1}^{n} u_r$.		
	fferences to find $\sum_{r=1}^{n} u_r$.		
	fferences to find $\sum_{r=1}^{n} u_r$.		
	fferences to find $\sum_{r=1}^{n} u_r$.		
	fferences to find $\sum_{r=1}^{n} u_r$.		
	fferences to find $\sum_{r=1}^{n} u_r$.		
	fferences to find $\sum_{r=1}^{n} u_r$.		
	fferences to find $\sum_{r=1}^{n} u_r$.		

(a)	Stat	e the value of S_1 and find the value of S_2 .	
(b)	(i)	Express S_{n+3} in terms of S_{n+2} and S_n .	
	(ii)	Hence, or otherwise, find the value of S_4 .	

miping un equation whose	e roots are $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$	
Find the value of $\frac{1}{\alpha + \beta} + \frac{1}{\beta}$	$\frac{1}{3+\gamma} + \frac{1}{\gamma+\alpha}$.	
$\alpha \mid \rho \mid \rho$	517 710	

3 (a) Prove by mathematical induction that, for all positive integers n,

$\sum_{r=1}^{\infty} (5r^4 + r^2) = \frac{1}{2}n^2(n+1)^2(2n+1).$	[6]
r=1	
	•••••
	· · · · · · · · ·
	,
	,
	•••••

Use the result given in part (a) together with the List of formulae (MF19) to find $\sum a$	r ⁴ in tern
of n , fully factorising your answer.	[3
	•••••
	• • • • • • • • • • • • • • • • • • • •
	•••••
	• • • • • • • • • • • • • • • • • • • •
	•••••
	• • • • • • • • • • • • • • • • • • • •
	•••••
	of n, fully factorising your answer.

4 The matrices A, B and C are given by

$$\mathbf{A} = \begin{pmatrix} 2 & k & k \\ 5 & -1 & 3 \\ 1 & 0 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } \quad \mathbf{C} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 0 \end{pmatrix},$$

where k is a real constant.

(a)	Find CAB.	[3]
(b)	Given that A is singular, find the value of k .	[3
	1 - 1 - 3 - 5 1 - 1	

	Page 8 of 16 9231_s21_qp_13
(c)	Using the value of k from part (b), find the equations of the invariant lines, through the origin, of the transformation in the x - y plane represented by CAB . [5]

5 The curve C has polar equation $r = \frac{1}{\pi - \theta} - \frac{1}{\pi}$, where $0 \le \theta \le \frac{1}{2}\pi$.

(a) Sketch *C*. [3]

(b) Show that the area of the region bounded by the half-line $\theta = \frac{1}{2}\pi$ and C is $\frac{3-4\ln 2}{4\pi}$. [6]

1116	plane Π_1 contains l_1 and the point P with position vector $-2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$.	
(a)	Find an equation of Π_1 , giving your answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$.	[2
	plane Π_2 contains l_2 and is parallel to l_1 .	
(b)	Find an equation of Π_2 , giving your answer in the form $ax + by + cz = d$.	[

Find the position vector of the	e foot of the perpendicular from the point Q to Π_2 .	[
		••••••
		•••••

Page 14 of 16 9231_s21_qp_13 The curve C has equation $y = \frac{x^2 - x - 3}{1 + x - x^2}$. (a) Find the equations of the asymptotes of C. [2] **(b)** Find the coordinates of any stationary points on *C*. [3]

[3]

(c) Sketch C, stating the coordinates of the intersections with the axes.

(d) Sketch the curve with equation $y = \left| \frac{x^2 - x - 3}{1 + x - x^2} \right|$ and find in exact form the set of values of x for which $\left| \frac{x^2 - x - 3}{1 + x - x^2} \right| < 3$. [6]

Page 16 of 16

9231_s21_qp_13