(a) Show that | | $\tan(r+1) - \tan r = \frac{1}{\cos^2 x}$ | os(r+1)cosr | | |--|---|-------------|--| | | | | | | •••••• | $a_r = \frac{1}{\cos(r+1)\cos r}.$ Use the method of dis | fferences to find $\sum_{r=1}^{n} u_r$. | | | | | fferences to find $\sum_{r=1}^{n} u_r$. | | | | | fferences to find $\sum_{r=1}^{n} u_r$. | | | | | fferences to find $\sum_{r=1}^{n} u_r$. | | | | | fferences to find $\sum_{r=1}^{n} u_r$. | | | | | fferences to find $\sum_{r=1}^{n} u_r$. | | | | | fferences to find $\sum_{r=1}^{n} u_r$. | | | | | fferences to find $\sum_{r=1}^{n} u_r$. | | | | | fferences to find $\sum_{r=1}^{n} u_r$. | | | | | fferences to find $\sum_{r=1}^{n} u_r$. | | | | | fferences to find $\sum_{r=1}^{n} u_r$. | | | | | fferences to find $\sum_{r=1}^{n} u_r$. | | | | | fferences to find $\sum_{r=1}^{n} u_r$. | | | | | fferences to find $\sum_{r=1}^{n} u_r$. | | | | (a) | Stat | e the value of S_1 and find the value of S_2 . | | |-----|------|---|--| (b) | (i) | Express S_{n+3} in terms of S_{n+2} and S_n . | (ii) | Hence, or otherwise, find the value of S_4 . | miping un equation whose | e roots are $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$ | | |--|---|--| Find the value of $\frac{1}{\alpha + \beta} + \frac{1}{\beta}$ | $\frac{1}{3+\gamma} + \frac{1}{\gamma+\alpha}$. | | | $\alpha \mid \rho \mid \rho$ | 517 710 | 3 (a) Prove by mathematical induction that, for all positive integers n, | $\sum_{r=1}^{\infty} (5r^4 + r^2) = \frac{1}{2}n^2(n+1)^2(2n+1).$ | [6] | |---|-------------------| | r=1 | ••••• | | | | | | · · · · · · · · · | | | | | | | | | | | | , | , | | | | | | | | | | | | ••••• | | | | | Use the result given in part (a) together with the List of formulae (MF19) to find $\sum a$ | r ⁴ in tern | |---|---| | of n , fully factorising your answer. | [3 | | | ••••• | • | | | ••••• | | | | | | • | | | ••••• | | | | | | | | | | | | • | ••••• | | | | | | of n, fully factorising your answer. | 4 The matrices A, B and C are given by $$\mathbf{A} = \begin{pmatrix} 2 & k & k \\ 5 & -1 & 3 \\ 1 & 0 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ and } \quad \mathbf{C} = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 0 \end{pmatrix},$$ where k is a real constant. | (a) | Find CAB. | [3] | |-----|---|-----| (b) | Given that A is singular, find the value of k . | [3 | 1 - 1 - 3 - 5 1 - 1 | | | | | | | | | | | | Page 8 of 16 9231_s21_qp_13 | |-----|---| | (c) | Using the value of k from part (b), find the equations of the invariant lines, through the origin, of the transformation in the x - y plane represented by CAB . [5] | 5 The curve C has polar equation $r = \frac{1}{\pi - \theta} - \frac{1}{\pi}$, where $0 \le \theta \le \frac{1}{2}\pi$. (a) Sketch *C*. [3] (b) Show that the area of the region bounded by the half-line $\theta = \frac{1}{2}\pi$ and C is $\frac{3-4\ln 2}{4\pi}$. [6] | 1116 | plane Π_1 contains l_1 and the point P with position vector $-2\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$. | | |------|--|----| | (a) | Find an equation of Π_1 , giving your answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$. | [2 | plane Π_2 contains l_2 and is parallel to l_1 . | | | (b) | Find an equation of Π_2 , giving your answer in the form $ax + by + cz = d$. | [|
 | | |------|--| | | | | | | |
 | | |
 | | |
 | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | |
 | | | | | | | | | | | | | | | Find the position vector of the | e foot of the perpendicular from the point Q to Π_2 . | [| |---------------------------------|---|--------| •••••• | | | | | | | | | | | | | | | | ••••• | Page 14 of 16 9231_s21_qp_13 The curve C has equation $y = \frac{x^2 - x - 3}{1 + x - x^2}$. (a) Find the equations of the asymptotes of C. [2] **(b)** Find the coordinates of any stationary points on *C*. [3] [3] (c) Sketch C, stating the coordinates of the intersections with the axes. (d) Sketch the curve with equation $y = \left| \frac{x^2 - x - 3}{1 + x - x^2} \right|$ and find in exact form the set of values of x for which $\left| \frac{x^2 - x - 3}{1 + x - x^2} \right| < 3$. [6] |
 | |------| |
 | | | | | |
 | |
 | |
 | Page 16 of 16 9231_s21_qp_13