		• • • • • • • • • • • • • • • • • • • •	
 	• • • • • • • • • • • • • • • • • • • •	•••••	
			•••••
 		•••••	
 		•••••	

(a)	Use standard results from the List of formulae (MF19) to find $\sum_{r=1}^{n} (1-r-r^2)$ in terms of simplifying your answer.

(b) Show that

$1-r-r^2$	_ r+1	r
$(r^2+2r+2)(r^2+1)$	$-\frac{1}{(r+1)^2+1}$	$r^2 + 1$

and hence use the method of differences to find	$\sum_{r=1}^{\infty} \frac{1-r-r^2}{(r^2+2r+2)(r^2+1)}.$	[5]
		•••••

•••••	 	

(c) Deduce the value of
$$\sum_{r=1}^{\infty} \frac{1-r-r^2}{(r^2+2r+2)(r^2+1)}$$
. [1]

3 The equation $x^4 - 2x^3 - 1 = 0$ has roots α , β , γ , δ .

1	uartic equatio		,,,,,	,		
••••••		 			 	
••••••		 		•••••	 	•••••
•••••		 			 	
•••••		 			 	
•••••		 			 	
		 , 	,		 	
••••••	•••••	 			 	
•••••		 			 	

Find the value of $\frac{1}{\alpha^3} + \frac{1}{\beta^3} + \frac{1}{\gamma^2}$	v	I
Find the value of $\alpha^4 + \beta^4 + \gamma^4$	$+\delta^4$.	
Find the value of $\alpha^4 + \beta^4 + \gamma^4$	$+\delta^4$.	
Find the value of $\alpha^4 + \beta^4 + \gamma^4$	$+\delta^4$.	
Find the value of $\alpha^4 + \beta^4 + \gamma^4$	$+\delta^4$.	
Find the value of $\alpha^4 + \beta^4 + \gamma^4$	$+\delta^4$.	
Find the value of $\alpha^4 + \beta^4 + \gamma^4$	$+\delta^4$.	
Find the value of $\alpha^4 + \beta^4 + \gamma^4$	$+\delta^4$.	
Find the value of $\alpha^4 + \beta^4 + \gamma^4$	$+\delta^4$.	
Find the value of $\alpha^4 + \beta^4 + \gamma^4$	$+\delta^4$.	
Find the value of $\alpha^4 + \beta^4 + \gamma^4$	$+\delta^4$.	
Find the value of $\alpha^4 + \beta^4 + \gamma^4$	$+\delta^4$.	
Find the value of $\alpha^4 + \beta^4 + \gamma^4$	$+\delta^4$.	
Find the value of $\alpha^4 + \beta^4 + \gamma^4$	$+\delta^4$.	
Find the value of $\alpha^4 + \beta^4 + \gamma^4$	$+\delta^4$.	
Find the value of $\alpha^4 + \beta^4 + \gamma^4$	$+\delta^4$.	
Find the value of $\alpha^4 + \beta^4 + \gamma^4$	$+\delta^4$.	

The matrix **M** represents the sequence of two transformations in the x-y plane given by a rotation of 60°

,	Find \mathbf{M} in terms of d .	[4]
•	The unit square in the x - y plane is transformed by \mathbf{M} onto a parallelogram	
)	The unit square in the x - y plane is transformed by \mathbf{M} onto a parallelogram Show that $d=2$.	of area $\frac{1}{2}d^2$ units ² .
)		

4

matrix N is such that $MN = \begin{pmatrix} 1 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$. Find N .
THE IV.

5 The curve *C* has polar equation $r = a \cot(\frac{1}{3}\pi - \theta)$, where *a* is a positive constant and $0 \le \theta \le \frac{1}{6}\pi$. It is given that the greatest distance of a point on *C* from the pole is $2\sqrt{3}$.

(a) Sketch C and show that a = 2.

[3]

(b)	Find the exact value of the area of the region bounded by C , the initial line and the half-line $\theta = \frac{1}{6}\pi$.

6 Let *t* be a positive constant.

The line l_1 passes through the point with position vector $t\mathbf{i} + \mathbf{j}$ and is parallel to the vector $-2\mathbf{i} - \mathbf{j}$. The line l_2 passes through the point with position vector $\mathbf{j} + t\mathbf{k}$ and is parallel to the vector $-2\mathbf{j} + \mathbf{k}$.

It is given that the shortest distance between the lines l_1 and l_2 is $\sqrt{21}$.

)	Find the value of t .	[5
		••••
		••••
		•••••
		••••
		••••
		••••
		•••••
		••••
		•••••
		•••••
)	plane Π_1 contains l_1 and is parallel to l_2 .	
	Write down an equation of Π_1 , giving your answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$.	[
	(a)	

The plane Π_2 has Cartesian equation 5x - 6y + 7z = 0.

Find the acute angle between l_2 and Π_2 .	
Find the acute angle between Π_1 and Π_2 .	
Find the acute angle between Π_1 and Π_2 .	
Find the acute angle between Π_1 and Π_2 .	
Find the acute angle between Π_1 and Π_2 .	
Find the acute angle between Π_1 and Π_2 .	
Find the acute angle between Π_1 and Π_2 .	
Find the acute angle between Π_1 and Π_2 .	
Find the acute angle between Π_1 and Π_2 .	
Find the acute angle between Π_1 and Π_2 .	
Find the acute angle between Π_1 and Π_2 .	
Find the acute angle between Π_1 and Π_2 .	
Find the acute angle between Π_1 and Π_2 .	
Find the acute angle between Π_1 and Π_2 .	
Find the acute angle between Π_1 and Π_2 .	

(a)	Find the equations of the asymptotes of <i>C</i> .	
		••••
		••••
		••••
		• • • • •
(b)	Find the coordinates of the stationary points on <i>C</i> .	
(b)	Find the coordinates of the stationary points on C .	
(b)	Find the coordinates of the stationary points on <i>C</i> .	
(b)	Find the coordinates of the stationary points on <i>C</i> .	
(b)		

[3]

(c) Sketch C, stating the coordinates of any intersections with the axes.

(d) Sketch the curve with equation $y = \left| \frac{x^2 + x + 9}{x + 1} \right|$ and find the set of values of x for which $2|x^2+x+9| > 13|x+1|$. [5]

