| | | • | | |------|---|---|-------| | | | | | | | | | | |
 | | | | |
 | | | | | | | | | |
 | | | | |
 | | | | | | | | | |
 | | | | |
 | | | | | | | | | |
 | • | ••••• | | |
 | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | ••••• | |
 |
 | | | | | | | | | |
 | | ••••• | | |
 | | | | | | | | | |
 | | | | |
 | | | | | | | | | |
 | | | | |
 | | | | | | | | | |
 | | ••••• | | | | | | | | | | | | | (a) | Use standard results from the List of formulae (MF19) to find $\sum_{r=1}^{n} (1-r-r^2)$ in terms of simplifying your answer. | |-----|---| **(b)** Show that | $1-r-r^2$ | _ r+1 | r | |---------------------|------------------------|-----------| | $(r^2+2r+2)(r^2+1)$ | $-\frac{1}{(r+1)^2+1}$ | $r^2 + 1$ | | and hence use the method of differences to find | $\sum_{r=1}^{\infty} \frac{1-r-r^2}{(r^2+2r+2)(r^2+1)}.$ | [5] | |---|--|-------| | | | ••••• | |
 |
 | |------|------| | | | |
 |
 | |
 |
 | | |------|------|--| |
 |
 | | | | | | | |
 |
 | |-------|------|------| ••••• |
 |
 |
 |
 | (c) Deduce the value of $$\sum_{r=1}^{\infty} \frac{1-r-r^2}{(r^2+2r+2)(r^2+1)}$$. [1] 3 The equation $x^4 - 2x^3 - 1 = 0$ has roots α , β , γ , δ . | 1 | uartic equatio | | ,,,,, | , | | | |--------|----------------|---------------|-------|-------|------|-------| | | |
 | | |
 | | | | | | | | | | | •••••• | |
 | | |
 | | | | |
 | | |
 | | | | |
 | | |
 |
 | | |
 | | | | |
 | | |
 | | | | | | | |
 | | | | | | | | | | | •••••• | |
 | | ••••• |
 | ••••• | | ••••• | |
 | | |
 | | | | |
 | | |
 | | | | | | | | | | | ••••• | |
 | | |
 | | | | |
 | | |
 | | | ••••• | |
 | | |
 | | | | | | | | | | | | |
, | , | |
 | | | | |
 | | |
 | | | | |
 | | |
 | | | | | | | | | | | •••••• | ••••• |
 | | |
 | | | | |
 | | |
 | | | ••••• | |
 | | |
 | | | | |
 | | |
 | | | | | | | | | | | | |
 | | |
 | | | | |
 | | |
 | | | Find the value of $\frac{1}{\alpha^3} + \frac{1}{\beta^3} + \frac{1}{\gamma^2}$ | v | I | |---|---------------|---| Find the value of $\alpha^4 + \beta^4 + \gamma^4$ | $+\delta^4$. | | | Find the value of $\alpha^4 + \beta^4 + \gamma^4$ | $+\delta^4$. | | | Find the value of $\alpha^4 + \beta^4 + \gamma^4$ | $+\delta^4$. | | | Find the value of $\alpha^4 + \beta^4 + \gamma^4$ | $+\delta^4$. | | | Find the value of $\alpha^4 + \beta^4 + \gamma^4$ | $+\delta^4$. | | | Find the value of $\alpha^4 + \beta^4 + \gamma^4$ | $+\delta^4$. | | | Find the value of $\alpha^4 + \beta^4 + \gamma^4$ | $+\delta^4$. | | | Find the value of $\alpha^4 + \beta^4 + \gamma^4$ | $+\delta^4$. | | | Find the value of $\alpha^4 + \beta^4 + \gamma^4$ | $+\delta^4$. | | | Find the value of $\alpha^4 + \beta^4 + \gamma^4$ | $+\delta^4$. | | | Find the value of $\alpha^4 + \beta^4 + \gamma^4$ | $+\delta^4$. | | | Find the value of $\alpha^4 + \beta^4 + \gamma^4$ | $+\delta^4$. | | | Find the value of $\alpha^4 + \beta^4 + \gamma^4$ | $+\delta^4$. | | | Find the value of $\alpha^4 + \beta^4 + \gamma^4$ | $+\delta^4$. | | | Find the value of $\alpha^4 + \beta^4 + \gamma^4$ | $+\delta^4$. | | | Find the value of $\alpha^4 + \beta^4 + \gamma^4$ | $+\delta^4$. | | The matrix **M** represents the sequence of two transformations in the x-y plane given by a rotation of 60° | , | Find \mathbf{M} in terms of d . | [4] | |---|--|---| • | The unit square in the x - y plane is transformed by \mathbf{M} onto a parallelogram | | |) | The unit square in the x - y plane is transformed by \mathbf{M} onto a parallelogram Show that $d=2$. | of area $\frac{1}{2}d^2$ units ² . |) | | | | | | | | | | | 4 | matrix N is such that $MN = \begin{pmatrix} 1 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$. Find N . | |--| | THE IV. | 5 The curve *C* has polar equation $r = a \cot(\frac{1}{3}\pi - \theta)$, where *a* is a positive constant and $0 \le \theta \le \frac{1}{6}\pi$. It is given that the greatest distance of a point on *C* from the pole is $2\sqrt{3}$. (a) Sketch C and show that a = 2. [3] | (b) | Find the exact value of the area of the region bounded by C , the initial line and the half-line $\theta = \frac{1}{6}\pi$. | |-----|--| **6** Let *t* be a positive constant. The line l_1 passes through the point with position vector $t\mathbf{i} + \mathbf{j}$ and is parallel to the vector $-2\mathbf{i} - \mathbf{j}$. The line l_2 passes through the point with position vector $\mathbf{j} + t\mathbf{k}$ and is parallel to the vector $-2\mathbf{j} + \mathbf{k}$. It is given that the shortest distance between the lines l_1 and l_2 is $\sqrt{21}$. |) | Find the value of t . | [5 | |---|--|-------| | | | •••• | | | | •••• | | | | ••••• | | | | •••• | | | | •••• | | | | •••• | | | | ••••• | | | | •••• | | | | ••••• | | | | ••••• |) | plane Π_1 contains l_1 and is parallel to l_2 . | | | | Write down an equation of Π_1 , giving your answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$. | [| | | | | | | | | | | | | | | | | | | (a) | | The plane Π_2 has Cartesian equation 5x - 6y + 7z = 0. | Find the acute angle between l_2 and Π_2 . | | |--|--| Find the acute angle between Π_1 and Π_2 . | | | Find the acute angle between Π_1 and Π_2 . | | | Find the acute angle between Π_1 and Π_2 . | | | Find the acute angle between Π_1 and Π_2 . | | | Find the acute angle between Π_1 and Π_2 . | | | Find the acute angle between Π_1 and Π_2 . | | | Find the acute angle between Π_1 and Π_2 . | | | Find the acute angle between Π_1 and Π_2 . | | | Find the acute angle between Π_1 and Π_2 . | | | Find the acute angle between Π_1 and Π_2 . | | | Find the acute angle between Π_1 and Π_2 . | | | Find the acute angle between Π_1 and Π_2 . | | | Find the acute angle between Π_1 and Π_2 . | | | Find the acute angle between Π_1 and Π_2 . | | | (a) | Find the equations of the asymptotes of <i>C</i> . | | |-----|---|-----------| | | | | | | | | | | | •••• | •••• | | | | | | | | | | | | | | | | •••• | | | | | | | | • • • • • | | | | | | (b) | Find the coordinates of the stationary points on <i>C</i> . | | | (b) | Find the coordinates of the stationary points on C . | | | (b) | Find the coordinates of the stationary points on <i>C</i> . | | | (b) | Find the coordinates of the stationary points on <i>C</i> . | | | (b) | [3] (c) Sketch C, stating the coordinates of any intersections with the axes. (d) Sketch the curve with equation $y = \left| \frac{x^2 + x + 9}{x + 1} \right|$ and find the set of values of x for which $2|x^2+x+9| > 13|x+1|$. [5]