A particle P of mass m is attached to one end of a light inextensible string of length a. The other end

Find, in terms of a and g , the t	time that <i>P</i> takes to make one complete revolution.	[2]
A particle Q of mass $m \log f$ nagnitude mkv N, where $v \log f$	alls from rest under gravity. The motion of Q is resist $^{-1}$ is the speed of Q at time t s and k is a positive consta	ed by a force of
A particle Q of mass $m \log f$ magnitude mkv N, where $v \log f$ made an expression for v in terms		
		ed by a force of nt.

particle moves in complete ver diameter of the circle. <i>OA</i> make	ached to a fixed point O by a light inextensible string of length a . To tical circles about O . The points A and B are on the path of Q with AB are an angle of 60° with the downward vertical through O and OB maked vertical through O . The speed of Q when it is at A is $2\sqrt{ag}$.
Given that T_A and T_B are the ten	nsions in the string at A and B respectively, find the ratio $T_A:T_B$.

3

4

A uniform solid circular cone, of vertical height 4r and radius 2r, is attached to a uniform solid cylinder, of height 3r and radius kr, where k is a constant less than 2. The base of the cone is joined to one of the circular faces of the cylinder so that the axes of symmetry of the two solids coincide (see diagram). The cone and the cylinder are made of the same material.

$\frac{(99k^2+96)}{}$	<u>) r</u>			rom the vertex	
$18k^2 + 32$	2				
				 •••••	
		100	ت تا		

The point C is on the circumference of the base of the cone. When the combined solid is freely suspended from C and hanging in equilibrium, the diameter through C makes an angle α with the downward vertical, where $\tan \alpha = \frac{1}{8}$.

	•••••	•••••	 	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••		•••••	 	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • •
	•••••		 					
			 •••••	•••••			• • • • • • • • • • • • • • • • • • • •	
•••••		•••••	 ••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••			 •••••	•••••			•••••	· • • •
•••••			 	•••••				
•••••			 					
•••••	•••••	•••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	

5

Two uniform smooth spheres A and B of equal radii each have mass m. The two spheres are each moving with speed u on a horizontal surface when they collide. Immediately before the collision A's direction of motion makes an angle of α ° with the line of centres, and B's direction of motion is perpendicular to that of A (see diagram). The coefficient of restitution between the spheres is e.

Immediately after the collision, B moves in a direction at right angles to the line of centres.

Show that $\tan \alpha =$	$=\frac{1+e}{1-e}.$			[4]
		100		

Given that $\tan \alpha = 2$, find the speed of A after the collision.	[4]
//00	
(0)	

6	A particle P is projected with speed u at an angle θ above the horizontal from a point O on a horizontal
	plane and moves freely under gravity. The direction of motion of P makes an angle α above the
	horizontal when P first reaches three-quarters of its greatest height.

	how that $\tan \alpha = \frac{1}{2} \tan \theta$.				
. •		,		•	
••		•	•		
				•••••	
••		•••••	•••••		
••		•••••	•••••	•••••	•••••
••		•••••	•••••	•••••	•••••
••		•••••	•••••	•••••	•••••
••		•••••	•••••	•••••	
			•••••		

or no growest norghi. Or v	e horizontal distance travelled by P when it find our answer in terms of u and g .	[4
		•••••

One end of a light spring of natural length a and modulus of elasticity 4mg is attached to a fixed point O. The other end of the spring is attached to a particle A of mass km, where k is a constant. Initially the spring lies at rest on a smooth horizontal surface and has length a. A second particle B, of mass m, is moving towards A with speed $\sqrt{\frac{4}{3}ga}$ along the line of the spring from the opposite direction to O (see diagram).

The particles A and B collide and coalesce. At a point C in the subsequent motion, the length of the spring is $\frac{3}{4}a$ and the speed of the combined particle is half of its initial speed.

Fine	d the value of k .				
•••••				 	
				 	•••••
		<i>S</i> c	oo	 	
		- 5	2 / 20/	 	

At the point C the horizontal surface becomes rough, with coefficient of friction μ between the combined particle and the surface. The deceleration of the combined particle at C is $\frac{9}{20}g$.

			• • • • •
 •			
 •			
 			• • • • •
 •••••			
 •••••	•••••	••••••	• • • • •
 •••••	•••••		• • • • •
 •••••	•••••	••••••	• • • • •
 •••••			
60			
$\leq \approx 2$	<u> </u>		