projection.								
Find, in terms of u , the speed of	f P at time $\frac{2}{3}T$ after projection.	[5]						
	/2004							

2

A light inextensible string of length a is threaded through a fixed smooth ring R. One end of the string is attached to a particle A of mass 3m. The other end of the string is attached to a particle B of mass B. The particle B hangs in equilibrium at a distance B vertically below the ring. The angle between B and B is B (see diagram). The particle B moves in a horizontal circle with constant angular speed B?

Show that $\cos \theta = \frac{1}{3}$ and find x in terms of a.	[5]
- Z & S -	

is $\frac{1}{2}$	In disposition A . The other end of the spring is attached to a particle P of mass m . The spring cally below A . The particle P is released from rest in the position where the extens a .	
(a)	Show that the initial acceleration of P is $\frac{3}{2}g$ upwards.	
		•••••
		•••••
		•••••
		•••••

4

A uniform square lamina ABCD has sides of length 10 cm. The point E is on BC with EC = 7.5 cm, and the point F is on DC with CF = x cm. The triangle EFC is removed from ABCD (see diagram). The centre of mass of the resulting shape ABEFD is a distance \overline{x} cm from CB and a distance \overline{y} cm from CD.

(a)	Show that $\overline{x} = \frac{400 - x^2}{80 - 3x}$ and find a corresponding expression for \overline{y} .	[4]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

The shape ABEFD is in equilibrium in a vertical plane with the edge DF resting on a smooth horizontal surface.

constants to be determined.		[

a)	Find the time taken for P to achieve a velocity of $2u$.	
` /	· · · · · · · · · · · · · · · · · · ·	
		,

	,		, 	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
	••••••			• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
	•••••						
	••••••			• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
			,	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••				• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
		•••••					
		•••••		••••••	••••••	•••••	•••••
		•••••		••••••	•••••		•••••
		•••••		•••••	•••••	•••••	•••••
				• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •
		•••••	,	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •

A particle P of mass m is moving with speed u on a fixed smooth horizontal surface. The particle strikes a fixed vertical barrier. At the instant of impact the direction of motion of P makes an angle α with the barrier. The coefficient of restitution between P and the barrier is e. As a result of the impact, the direction of motion of P is turned through 90° .

	how that $\tan^2 \alpha = \frac{1}{e}$.		
••		 	
•		 	
• •		 	
• •		 •••••	 •••••
		 	 •••••
• •		 •••••	
• •		 •••••	
•		 	
•		 	

The particle P loses two-thirds of its kinetic energy in the impact.

Find the value of α and the value of e .	[5]
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	• • • •

A hollow cylinder of radius a is fixed with its axis horizontal. A particle P, of mass m, moves in part of a vertical circle of radius a and centre O on the smooth inner surface of the cylinder. The speed of P when it is at the lowest point A of its motion is $\sqrt{\frac{7}{2}ga}$.

The particle P loses contact with the surface of the cylinder when OP makes an angle θ with the upward vertical through O.

	••••
 	••••
	••••
 	••••
 	••••
	• • • • •
 	••••
 	••••
	•••••

 			•••••	•••••		•••••	•••••	 	
 								 •••••	
 		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	 •••••	
 		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	 •••••	
 			•••••	•••••		•••••	•••••	 •••••	
 •••••	•••••		•••••	•••••		•••••	•••••	 •••••	
 		••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	 •••••	
 •••••	•••••			•••••				 •••••	
 		•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••		 	
 	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	 	
 			•••••		•••••	•••••		 	
 								 • • • • • •	