1 Find the solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + 5y = \mathrm{e}^{-7x}$$

for which $y = 0$ when $x = 0$. Give your answer in the form $y = f(x)$.	[6]

2	It is given that $y = 2^x$.

	with respect to x, show that $\frac{dy}{dx} = 2^x \ln 2$.	
•••••		
Frite down $\frac{d^2y}{dx^2}$.		
dx^2		

Ience find the first th	ree terms in the Maclaurin's series for 2^x .	
Ience find the first th	ree terms in the Maclaurin's series for 2^x .	
Ience find the first th	ree terms in the Maclaurin's series for 2^x .	
Hence find the first th	ree terms in the Maclaurin's series for 2^x .	
Hence find the first th	ree terms in the Maclaurin's series for 2^x .	
Hence find the first th	ree terms in the Maclaurin's series for 2^x .	
Ience find the first th	ree terms in the Maclaurin's series for 2 ^x .	
Hence find the first the	ree terms in the Maclaurin's series for 2 ^x .	
Hence find the first the	ree terms in the Maclaurin's series for 2 ^x .	
Hence find the first the	ree terms in the Maclaurin's series for 2 ^x .	
Hence find the first the	ree terms in the Maclaurin's series for 2 ^x .	
Ience find the first the	ree terms in the Maclaurin's series for 2 ^x .	
Hence find the first the	ree terms in the Maclaurin's series for 2 ^x .	
Ience find the first the	ree terms in the Maclaurin's series for 2 ^x .	
Ience find the first the	ree terms in the Maclaurin's series for 2 ^x .	

	•••••			
				•••••
•••••		•••••	•••••	
	•••••		•••••	
3k 3k 3k .				
	e k is a positive inte	ger and z_1, z_2, z_3 a	re the roots of z^3	=-1-1.
$v = z_1^{5n} + z_2^{5n} + z_3^{5n}$, where				
$w = z_1^{3k} + z_2^{3k} + z_3^{3k}, \text{ where}$ Express w in the form R	$e^{i\alpha}$, where $R > 0$,	giving R and α in t	erms of k .	
$w = z_1^{3k} + z_2^{3k} + z_3^{3k}$, where Express w in the form R	$e^{i\alpha}$, where $R > 0$,	giving R and α in t	erms of k .	
	$e^{i\alpha}$, where $R > 0$,	giving R and α in t	erms of k.	
	$e^{i\alpha}$, where $R > 0$,	giving R and α in t	erms of <i>k</i> .	
	$e^{i\alpha}$, where $R > 0$,	giving <i>R</i> and α in t	erms of k.	
	$e^{i\alpha}$, where $R > 0$,	giving R and α in t	erms of <i>k</i> .	
	$e^{i\alpha}$, where $R > 0$,	giving R and α in t	erms of k.	
	$e^{i\alpha}$, where $R > 0$,	giving R and α in t	erms of k.	
	$e^{i\alpha}$, where $R > 0$,	giving R and α in t	erms of k.	
	$e^{i\alpha}$, where $R > 0$,	giving R and α in t	erms of k.	
	$e^{i\alpha}$, where $R > 0$,	giving R and α in t	erms of k.	
	$e^{i\alpha}$, where $R > 0$,	giving R and α in t	erms of k.	
	$e^{i\alpha}$, where $R > 0$,	giving R and α in t	erms of k.	

4

The diagram shows the curve with equation $y = x^2$ for $0 \le x \le 1$, together with a set of n rectangles of width $\frac{1}{n}$.

(a) By considering the sum of the areas of these rectangles, show that

$\int_0^1 x^2 \mathrm{d}x < \frac{2n}{n}$	$\frac{2+3n+1}{6n^2}$.	[4]

(b)	Use a similar method to find, in terms of n , a lower bound for $\int_0^1 x^2 dx$.	[2
		•••••
		•••••
		•••••

5 The curves $C_1: y = \cosh x$ and $C_2: y = \sinh 2x$ intersect at the point where x = a.

Find the exact value of a, giving your answer in logarithmic form.
Sketch C_1 and C_2 on the same diagram.

	•••••
 (00)	
() (

(a)	Find the exact value of I_1 .	
(b)	By considering $\frac{d}{dx}\left(x(1-x^2)^{-\frac{1}{2}n}\right)$, or otherwise, show that	
	$nI_{n+2} = 2^{n-1}3^{-\frac{1}{2}n} + (n-1)I_n.$	

Find the exact value of I_5 giving determined.			[3
	 	•••••	

7 It is given that $x = t^3 y$ and

$$t^{3} \frac{d^{2} y}{dt^{2}} + (4t^{3} + 6t^{2}) \frac{dy}{dt} + (13t^{3} + 12t^{2} + 6t)y = 61e^{\frac{1}{2}t}.$$

Show that			
<u>.</u>	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 4\frac{\mathrm{d}x}{\mathrm{d}t} + 13x = 61e$	$\frac{1}{2}t$.	[4]

/////////	•••••

8 (a) Find the values of a for which the system of equations

$$3x + y + z = 0,$$

$$ax + 6y - z = 0,$$

$$ay - 2z = 0,$$

loes not have a unique solution.	[3]
	· • • • •
	· • • • • •

The matrix A is given by

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 6 & -1 \\ 0 & 0 & -2 \end{pmatrix}.$$

•••••	 •••••	••••••		••••••	••••••	
	 					•••••
			<u></u>			

Find a matrix P and a diagonal matrix D such that $A^3 = PDP^{-1}$.	[7