1 Find the solution of the differential equation $$\frac{\mathrm{d}y}{\mathrm{d}x} + 5y = \mathrm{e}^{-7x}$$ | for which $y = 0$ when $x = 0$. Give your answer in the form $y = f(x)$. | [6] | |--|-----| 2 | It is given that $y = 2^x$. | |---|------------------------------| | | | | | with respect to x, show that $\frac{dy}{dx} = 2^x \ln 2$. | | |----------------------------------|--|--| ••••• | | | | | | | | Frite down $\frac{d^2y}{dx^2}$. | | | | dx^2 | | | | | | | | | | | | | *************************************** | | | | | | | | | | | Ience find the first th | ree terms in the Maclaurin's series for 2^x . | | | Ience find the first th | ree terms in the Maclaurin's series for 2^x . | | | Ience find the first th | ree terms in the Maclaurin's series for 2^x . | | | Hence find the first th | ree terms in the Maclaurin's series for 2^x . | | | Hence find the first th | ree terms in the Maclaurin's series for 2^x . | | | Hence find the first th | ree terms in the Maclaurin's series for 2^x . | | | Ience find the first th | ree terms in the Maclaurin's series for 2 ^x . | | | Hence find the first the | ree terms in the Maclaurin's series for 2 ^x . | | | Hence find the first the | ree terms in the Maclaurin's series for 2 ^x . | | | Hence find the first the | ree terms in the Maclaurin's series for 2 ^x . | | | Hence find the first the | ree terms in the Maclaurin's series for 2 ^x . | | | Ience find the first the | ree terms in the Maclaurin's series for 2 ^x . | | | Hence find the first the | ree terms in the Maclaurin's series for 2 ^x . | | | Ience find the first the | ree terms in the Maclaurin's series for 2 ^x . | | | Ience find the first the | ree terms in the Maclaurin's series for 2 ^x . | | | | ••••• | | | | |--|---------------------------------|------------------------------|-----------------------|--------| ••••• | ••••• | | ••••• | ••••• | ••••• | | ••••• | | | | | | | | | 3k 3k 3k . | | | | | | | e k is a positive inte | ger and z_1, z_2, z_3 a | re the roots of z^3 | =-1-1. | | $v = z_1^{5n} + z_2^{5n} + z_3^{5n}$, where | | | | | | $w = z_1^{3k} + z_2^{3k} + z_3^{3k}, \text{ where}$
Express w in the form R | $e^{i\alpha}$, where $R > 0$, | giving R and α in t | erms of k . | | | $w = z_1^{3k} + z_2^{3k} + z_3^{3k}$, where
Express w in the form R | $e^{i\alpha}$, where $R > 0$, | giving R and α in t | erms of k . | | | | $e^{i\alpha}$, where $R > 0$, | giving R and α in t | erms of k. | | | | $e^{i\alpha}$, where $R > 0$, | giving R and α in t | erms of <i>k</i> . | | | | $e^{i\alpha}$, where $R > 0$, | giving <i>R</i> and α in t | erms of k. | | | | $e^{i\alpha}$, where $R > 0$, | giving R and α in t | erms of <i>k</i> . | | | | $e^{i\alpha}$, where $R > 0$, | giving R and α in t | erms of k. | | | | $e^{i\alpha}$, where $R > 0$, | giving R and α in t | erms of k. | | | | $e^{i\alpha}$, where $R > 0$, | giving R and α in t | erms of k. | | | | $e^{i\alpha}$, where $R > 0$, | giving R and α in t | erms of k. | | | | $e^{i\alpha}$, where $R > 0$, | giving R and α in t | erms of k. | | | | $e^{i\alpha}$, where $R > 0$, | giving R and α in t | erms of k. | | | | $e^{i\alpha}$, where $R > 0$, | giving R and α in t | erms of k. | | 4 The diagram shows the curve with equation $y = x^2$ for $0 \le x \le 1$, together with a set of n rectangles of width $\frac{1}{n}$. (a) By considering the sum of the areas of these rectangles, show that | $\int_0^1 x^2 \mathrm{d}x < \frac{2n}{n}$ | $\frac{2+3n+1}{6n^2}$. | [4] | |--|-------------------------|------| |
 | | | | | |
 | | | | | | | |
 | | (b) | Use a similar method to find, in terms of n , a lower bound for $\int_0^1 x^2 dx$. | [2 | |-----|---|-------| | | | | | | | | | | | | | | | ••••• | | | | | | | | | | | | ••••• | ••••• | | | | | | | | | | | | | 5 The curves $C_1: y = \cosh x$ and $C_2: y = \sinh 2x$ intersect at the point where x = a. | Find the exact value of a, giving your answer in logarithmic form. | |--| Sketch C_1 and C_2 on the same diagram. | | | ••••• | |----------|-------| | | | |
 | | |
 | | |
 | | | | | | | | | | | |
 | | |
 | | |
 | | | | | |
 | | |
 | | | | | | | | | | | | | | |
 | | | | | | | | |
 | | |
 | | | | | | | | | | | |
 | | | | | |
(00) | | | () (| | | (a) | Find the exact value of I_1 . | | |-----|--|--| | | | | | (b) | By considering $\frac{d}{dx}\left(x(1-x^2)^{-\frac{1}{2}n}\right)$, or otherwise, show that | | | | $nI_{n+2} = 2^{n-1}3^{-\frac{1}{2}n} + (n-1)I_n.$ | Find the exact value of I_5 giving determined. | | | [3 | |--|------|-------|----| | |
 | | | | | | | | | | | | |
 | | | | |
 | | | | |
 | ••••• | | | |
 | | | | |
 | | | | | | | | | | | | | 7 It is given that $x = t^3 y$ and $$t^{3} \frac{d^{2} y}{dt^{2}} + (4t^{3} + 6t^{2}) \frac{dy}{dt} + (13t^{3} + 12t^{2} + 6t)y = 61e^{\frac{1}{2}t}.$$ | Show that | | | | |-----------|---|------------------|-----| | <u>.</u> | $\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 4\frac{\mathrm{d}x}{\mathrm{d}t} + 13x = 61e$ | $\frac{1}{2}t$. | [4] | ///////// | ••••• | |-----------|-------| 8 (a) Find the values of a for which the system of equations $$3x + y + z = 0,$$ $$ax + 6y - z = 0,$$ $$ay - 2z = 0,$$ | loes not have a unique solution. | [3] | |----------------------------------|-------------| | | | | | · • • • • | | | · • • • • • | | | | | | | The matrix A is given by $$\mathbf{A} = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 6 & -1 \\ 0 & 0 & -2 \end{pmatrix}.$$ | ••••• |
••••• | •••••• | | •••••• | •••••• | | |-------|-----------|--------|---------|--------|--------|-------| | |
 | | | | | ••••• | | |
 | | | | | | | | | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | | | | <u></u> | | | | | Find a matrix P and a diagonal matrix D such that $A^3 = PDP^{-1}$. | [7 | |--|----| |