1 The cubic equation $7x^3 + 3x^2 + 5x + 1 = 0$ has roots α , β , γ .

(a)	Find a	cubic	equation	whose	roots	are	α^{-1}	$, \beta^{-}$	¹ , γ	-1
-----	--------	-------	----------	-------	-------	-----	---------------	---------------	------------------	----

[3]

• • • • • • • • • • • • • • • • • • • •	 •	•••••	 •

(b)	Find the value of $\alpha^{-2} + \beta^{-2} + \gamma^{-2}$.	[2]
		••••

c)	Find the value of $\alpha^{-3} + \beta^{-3} + \gamma^{-3}$.	[2

(a)	Prove by induction that $u_n = 2^n - 1$ for all positive integers n .	[
(h)	Deduce that u_{2n} is divisible by u_n for $n \ge 1$.	
(6)	beduce that u_{2n} is divisible by u_n for $n > 1$.	l

3 Let $S_n = 2^2 + 6^2 + 10^2 + \dots + (4n-2)^2$.

Use standard results from the List of Formulae (MF19) to show that $S_n = \frac{4}{3}n(4n^2 - 1)$.

S_n	s and find $\sum_{n=1}^{\infty} \frac{n}{S_n}$ in terms of N .	
Deduce the value of $\sum_{n=1}^{\infty} \frac{n}{S_n}$.		
n=1 ···		

4 The matrix **A** is given by

$$\mathbf{A} = \begin{pmatrix} k & 0 & 2 \\ 0 & -1 & -1 \\ 1 & 1 & -k \end{pmatrix},$$

where k is a real constant.

a)	Show that \mathbf{A} is non-singular.

The matrices **B** and **C** are given by

$$\mathbf{B} = \begin{pmatrix} 0 & -3 \\ -1 & 3 \\ 0 & 0 \end{pmatrix} \text{ and } \mathbf{C} = \begin{pmatrix} -3 & -1 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

It is given that $\mathbf{CAB} = \begin{pmatrix} -2 & -\frac{3}{2} \\ -1 & -\frac{3}{2} \end{pmatrix}$.

(b)	Find the value of k .	[3]

Find the equations of the invariant lines, through the origin, of the transformation in the x - y pl represented by CAB .

[2]

[4]

- The curve C has polar equation $r = a \tan \theta$, where a is a positive constant and $0 \le \theta \le \frac{1}{4}\pi$.
 - (a) Sketch C and state the greatest distance of a point on C from the pole.

(b) Find the exact value of the area of the region bounded by C and the half-line $\theta = \frac{1}{4}\pi$

Show that <i>C</i> has Cartesian eq	$\sqrt{a^2-x^2}$	
	<u>4</u> 1 a√2 2	
Using your answer to part (b)	, deduce the exact value of $\int_0^{\frac{1}{2}a\sqrt{2}} \frac{x^2}{\sqrt{a^2 - x^2}} dx$	dx.
Using your answer to part (b)	, deduce the exact value of $\int_0^{\frac{1}{2}a\sqrt{2}} \frac{x^2}{\sqrt{a^2 - x^2}} dx$	dx.
Using your answer to part (b)	, deduce the exact value of $\int_0^{\frac{1}{2}a\sqrt{2}} \frac{x^2}{\sqrt{a^2 - x^2}} dx$	dx.
Using your answer to part (b)	, deduce the exact value of $\int_0^{\frac{1}{2}a\sqrt{2}} \frac{x^2}{\sqrt{a^2 - x^2}} dx$	dx.
Using your answer to part (b)	o, deduce the exact value of $\int_0^{\frac{1}{2}a\sqrt{2}} \frac{x^2}{\sqrt{a^2 - x^2}} dx$	dx.
Using your answer to part (b)	o, deduce the exact value of $\int_0^{\frac{1}{2}a\sqrt{2}} \frac{x^2}{\sqrt{a^2 - x^2}} dx$	dx.
Using your answer to part (b)	, deduce the exact value of $\int_0^{\frac{1}{2}a\sqrt{2}} \frac{x^2}{\sqrt{a^2 - x^2}} dx$	dx.
Using your answer to part (b)	o, deduce the exact value of $\int_0^{\frac{1}{2}a\sqrt{2}} \frac{x^2}{\sqrt{a^2 - x^2}} dx$	dx.
Using your answer to part (b)	o, deduce the exact value of $\int_0^{\frac{1}{2}a\sqrt{2}} \frac{x^2}{\sqrt{a^2 - x^2}} dx$	dx.
Using your answer to part (b)	o, deduce the exact value of $\int_0^{\frac{1}{2}a\sqrt{2}} \frac{x^2}{\sqrt{a^2 - x^2}} dx$	dx.
Using your answer to part (b)	o, deduce the exact value of $\int_0^{\frac{1}{2}a\sqrt{2}} \frac{x^2}{\sqrt{a^2 - x^2}} dx$	dx.
Using your answer to part (b)	, deduce the exact value of $\int_0^{\frac{1}{2}a\sqrt{2}} \frac{x^2}{\sqrt{a^2 - x^2}} dx$	dx.

6	The curve C has equation		$10 + x - 2x^2$
U	The curve C has equation	<i>y</i> –	2x-3

•		
•		
•		
•		
	Show that C has no turning points.	
	Show that C has no turning points.	
	Show that C has no turning points.	
	Show that <i>C</i> has no turning points.	
	Show that C has no turning points.	

[3]

(c) Sketch C, stating the coordinates of the intersections with the axes.

(d) Sketch the curve with equation $y = \left| \frac{10 + x - 2x^2}{2x - 3} \right|$ and find in exact form the set of values of x for which $\left| \frac{10 + x - 2x^2}{2x - 3} \right| < 4$. [6]

	(m) (25.6 (m)	

(a)	Find the equation of Π , giving your answer in the form $ax + by + cz = d$.	[4
		•••••
(b)	Find the distance between l_2 and Π .	[

The point P on l_1 and the point Q on l_2 are such that PQ is perpendicular to both l_1 and l_2 .

	has position ve	-7	_,				
•••••	•••••		•••••		•••••	•••••	•••••
•••••	•••••		••••••	••••••	••••••	••••••	•••••
• • • • • • • • • • • • • • • • • • • •	•••••				•••••	•••••	•••••
				•••••		•••••	
•••••	•••••		•••••		••••••	•••••	•••••
•••••	•••••		•••••		••••••	•••••	•••••
	•••••	• • • • • • • • • • • • • • • • • • • •					
	•••••						