- 1 Let *a* be a positive constant. - (a) Sketch the curve with equation $y = \frac{ax}{x+7}$. [2] **(b)** Sketch the curve with equation $y = \left| \frac{ax}{x+7} \right|$ and find the set of values of x for which $\left| \frac{ax}{x+7} \right| > \frac{a}{2}$. [4] | · · · · · · · · · · · · · · · · · · · | |---| | · • • • • • • • • • • • • • • • • • • • | | | | ••••• | | ••••• | | ••••• | | | | | | ••••• | | | | | | | | | | | Find a cubic equa | ition whose ro | ots are α^2 , μ | β^2, γ^2 . | | | |-----|--|--------------------|------------------------------|-----------------------|-------|--| ••••• | $2 + B^2 + y^2 = $ | $2(\alpha + \beta + \gamma)$ | | | | | (h) | It is given that α^2 | | | | | | | (b) | It is given that α^2 | | 2(0 p 7). | | | | | (b) | It is given that α^2 (i) Find the value | | Σ(α + β + γ). | | | | | (b) | | | | | | | | (b) | | | | | | | | (b) | | | | | | | | (b) | | | | | | | | (b) | | | | | | | ····/oo\····· | (-) | | | |-----|---|--| | (a) | Find the equations of the asymptotes of <i>C</i> . | (h) | Find the coordinates of the stationers rejets on C | | | (b) | Find the coordinates of the stationary points on <i>C</i> . | | | (b) | Find the coordinates of the stationary points on C . | | | (b) | [3] (c) Sketch C. 4 (a) By first expressing $\frac{1}{r^2-1}$ in partial fractions, show that $$\sum_{r=2}^{n} \frac{1}{r^2 - 1} = \frac{3}{4} - \frac{an + b}{2n(n+1)},$$ | where a and b are integers to be found. | [5] | |---|-----| (2) | | | | Deduce the value of $\sum_{r=2}^{\infty} \frac{1}{r^2 - r^2}$ | · I | | |---|---|--------------------|--| 2 <i>n</i> | | | F | Find the limit, as $n \to \infty$, of | $\sum \frac{n}{2}$ | | | | , , , , , , , , , , , , , , , , , , , | $r^2 - 1$ | | | | • | 1) | Find the shortest distance between l_1 and l_2 . | | |----|--|--| The plane ${\it II}$ contains l_1 and is parallel to the vector ${\bf i} + {\bf k}$. | ••••• | •••••• | | | | |------------------|------------------|------------------------------|------------------------------|------------------------------| ••••• | ••••• | | •••••• | ••••• | | | | | | | | | | | | | | le between l_2 | and Π . | ••••• | | ••••• | 1113 | | | | | | le between l_2 | le between l_2 and Π . | le between l_2 and Π . | le between l_2 and Π . | 6 Let $\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$. | | The transformation in the <i>x-y</i> plane represented by \mathbf{A}^- triangle of area $d \mathrm{cm}^2$. | transforms a triangle of area 30 cm ² | ² into a | |--|--|--|---------------------| |--|--|--|---------------------| Find the value of d. [3] **(b)** Prove by mathematical induction that, for all positive integers n, $\mathbf{A}^n = \begin{pmatrix} 2^n & 0 \\ 2^n - 1 & 1 \end{pmatrix}. \tag{5}$ | Find the value of n . | | |-------------------------|------| | | | | |
 | | |
 | | |
 | | | | | |
 | | |
 | | | | | | | | |
 | | |
 | | | | | | | | |
 | | |
 | | | | | |
 | | |
 | | |
 | | | | | |
 | | |
 | | | | | | | | |
 | | |
 | | | | | |
 | | |
 | | |
 | | | | | |
 | - 7 The curve C_1 has polar equation $r = \theta \cos \theta$, for $0 \le \theta \le \frac{1}{2}\pi$. - (a) The point on C_1 furthest from the line $\theta = \frac{1}{2}\pi$ is denoted by P. Show that, at P, $2\theta \tan \theta - 1 = 0$ | | | 20 tan 0 1 - | - 0 | | | |--|------------------------|----------------|------------------|--------|--------------------| | and verify that this | equation has a r | root between 0 | .6 and 0.7. | | | | | | | | | | | | | | | | | | ••••• | | | | •••••• | ••••• | | | | | | | | | | | | | | ••••• | | | | | | | | | | | ••••• | | | | | | | | | | | | | | | ••••• | •••••• | ••••• | | | | | | | | | | | | | | | | | , | ••••• | •••••• | •••••• | | | | | | | | | | | | | | ••••• | | | | | | | | | curve C_2 has polar denoted by O , and a | at another point | t Q. | | | C_2 intersect at | | Find the polar coord | linates of Q , given | ving your answ | vers in exact fo | orm. | 7.42 | | | | | | | | | | | [3] | | (-) | 01 .4.1. 0 | 10 | | 11 | |---|--------------|------------|--------------------|-------------|----------| | (| C | Sketch C. | ana C ₂ | on the same | diagram. | | d) | Find, in terms of π , the area of the region bounded by the arc OQ of C_1 and the arc OQ of C_2 . [7] | |----|---| |