8MA0 Unit Test

Mechanics – Quantities and Units

Time allowed: 45 minutes

Name:

Teacher:

Question	Points	Score
1	3	
2	12	
3	15	
4	8	
5	12	
Total:	50	

How I can achieve better:

- •
- •
- _
- •
- •
- •

1. A person runs across a field from point A to point B with a speed of 5.3 ms⁻¹ and then runs back from point B to point A with a speed of 4.8 ms⁻¹.

Taking the positive direction as shown in the diagram, state the person's

- (a) velocity when travelling from A to B,
- (b) velocity when travelling from B to A.

Another person runs 30 m from A in the exact opposite direction of B to A point C.

(c) State this person's displacement from A at the point C.

[1]

[1]

[1]

Total: 3

8MA0 Unit Test – Mechanics: Quantities and Units

[2]

[2]

2. The height of a tennis ball above the ground can be modelled using the equation

$$h = 1.7 + 0.18x - 0.01x^2,$$

where h metres is the height of a tennis ball above the ground and x metres is the horizontal distance travelled.

- (a) Find the height of the tennis ball when it is
 - i. struck,
 - ii. at a horizontal distance of 7 m.

To be called 'in' the tennis ball must hit the ground before it travels A horizontal distance of 25 m.

(b) Will the tennis ball be called 'in'?	[5]
(c) The tennis ball is hit with an initial speed of 2 km min ⁻¹ . Convert this into ms^{-1} .	[3]
	Total: 12

[3]

3. The height of a pole vaulter above the ground can be modelled using the equation

$$h = \frac{1}{60} \left(125x - 12x^2 \right),$$

where h metres is the vertical height of the pole vaulter and x metres is the horizontal distance travelled after his feet leave the ground.

- (a) Find the horizontal distance travelled when the pole vaulter lands.
- (b) Given that the pole vaulter is at his greatest height halfway between leaving the ground [3] and landing, find the greatest height of the pole vaulter.

For a jump to be successful, the pole vaulter must clear a bar of height 4.9 m.

- (c) Calculate the range of horizontal distances from the bar that the pole vaulter can leave the [7] ground and have a successful jump.
- (d) State the effect in this model of
 - i. modelling the pole vaulter as a particle,
 ii. making air resistance negligible.
 [1]
 Total: 15

4. A boat travels from A to B and then from B to C. The displacement from A to B is $(-28i+8)$	$0\mathbf{j})$
m. The displacement from B to C is $(130\mathbf{i} + 15\mathbf{j})$ m.	
(a) Find the total distance the boat travelled in moving from A to C .	[4]
(b) Find the angle the vector \overrightarrow{AC} makes with the unit vector i .	[4]
	Total: 8

$\mathbf{8MA0} \ \mathbf{Unit} \ \mathbf{Test} - \mathbf{Mechanics:} \ \mathbf{Quantities} \ \mathbf{and} \ \mathbf{Units}$

5. An	ice hockey puck is hit and initially travels with a velocity of $(14\mathbf{i} + 22\mathbf{j}) \text{ ms}^{-1}$	
(a)) Find the speed of the puck.	[3]
(b)) Find the angle of direction of motion the puck makes with the unit vector \mathbf{j} .	[4]
(c)	e) State the effect of modelling the ice as a smooth surface.	[1]
(d)) A hockey puck has a density of 1.4 g cm^{-3} . Convert this into kg m ⁻³ .	[4]
		Total: 12

www.CasperYC.club

Last updated: December 3, 2020