Pearson Edexcel	Question	Points	Score
AS Mathematics 8MA0	1	3	
Practice Paper B	2	3	
Pure Mathematics Time allowed: 2 hours	3	4	
	4	6	
	5	6	
	6	6	
	7	7	
Centre:	8	8	
	9	8	
Name:	10	8	
Teacher:	11	9	
	12	13	
	13	19	
	Total:	100	

1. A teacher asks one of her students to solve the equation $2\cos(2x) + \sqrt{3} = 0$ for $0 \le x \le 180^{\circ}$. The attempt is shown below.

$$2\cos(2x) = -\sqrt{3}$$

$$\cos(2x) = -\frac{\sqrt{3}}{2}$$

$$2x = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

$$2x = 150^{\circ}$$

$$x = 75^{\circ}$$

or $x = 360^{\circ} - 75^{\circ} = 295^{\circ}$ so reject as out of range.

- (a) Identify the mistake made by the student.
- (b) Write down the correct solutions to the equation.

Total: 3

[1]

[2]

2. Find in exact form the unit vector in the same direction as $a = 4\mathbf{i} - 7\mathbf{j}$.

Page 2 of 18

3. Simplify

$$\frac{6\sqrt{3}-4}{8-\sqrt{3}},$$

giving your answer in the form $p\sqrt{3} - q$, where p and q are positive rational numbers.

[4]

[4]

- 4. (a) Prove that, if $1 + 3x^2 + x^3 < (1+x)^3$, then x > 0.
 - (b) Show, by means of a counter example, that the inequality $1 + 3x^2 + x^3 < (1 + x)^3$ is not [2] true for all values of x.

5. The curve with equation y = h(x) passes through the point (4, 19). Given that

$$h'(x) = 15x\sqrt{x} - \frac{40}{\sqrt{x}},$$

find h(x).

7.	(a) Expand $(1+3x)^8$ in ascending powers of x, up to and including the term in x^3 , simplifying	[4]
	each coefficient in the expansion.	

(b) Showing your working clearly, use your expansion to find, to 5 significant figures, an approximation for 1.03⁸.

- 8. (a) Sketch the graph $y = \log_9(x+a), a > 0$, for x > -a, labelling any asymptotes and points [6] of intersection with the x-axis or y-axis. Leave your answers in terms of a where necessary.
 - (b) For x > -a, describe, with a reason, the relationship between the graphs of $y = \log_9(x+a)^2$ [2] and $y = \log_9(x+a)$.

9. (a) On the grid shade the region comprising all points whose coordinates satisfy the inequalities [3]

 $y \le 2x + 5, 2y + x \le 6$ and $y \ge 2$.

(b) Work out the area of the shaded region.

[5]

10. A particle P of mass 6 kg moves under the action of two forces, ${\cal F}_1$ and ${\cal F}_2,$ where

$$F_1 = (8\mathbf{i} - 10\mathbf{j})\mathbf{N}$$
 and $F_2 = (p\mathbf{i} + q\mathbf{j})\mathbf{N}$

p and q are constants.

The acceleration of P is $a = (3\mathbf{i} - 2\mathbf{j}) \mathrm{ms}^{-2}$.

(a) Find, to 1 decimal place, the angle between the acceleration and i. [2]
(b) Find the values of p and q. [3]
(c) Find the magnitude of the resultant force R of the two forces F₁ and F₂. [3]
Simplify your answer fully. [3]

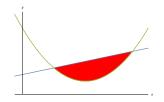
(Q10 continued)

- $f(x) = x^3 7x^2 24x + 18.$
- (a) Sketch the graph of the gradient function, y = f'(x).
- (b) Use algebraic methods to determine any points where the graph cuts the coordinate axes and mark these on the graph.
- (c) Using calculus, find the coordinates of any turning points on the graph.

Total: 9

[9]

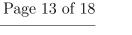
12. The diagram shows part of curve with equation $y = x^2 - 8x + 20$ and part of the line with equation y = x + 6.



- (a) Using an appropriate algebraic method, find the coordinates of A and B. [4]
- (b) The x-coordinates of A and B are denoted x_A and x_B respectively. Find the exact value of the area of the finite region bounded by the x-axis, the lines $x = x_A$ and $x = x_B$ and the line AB.
- (c) Use calculus to find the exact value of the area of the finite region bounded by the x-axis, [5] the lines $x = x_A$ and $x = x_B$ and the curve $y = x^2 - 8x + 20$.
- (d) Hence, find, to one decimal place, the area of the shaded region enclosed by the curve [2] $y = x^2 - 8x + 20$ and the line AB.

Total: 13

[2]



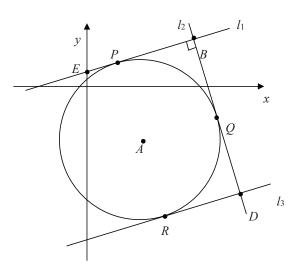
(Q12 continued)

(Q12 continued)

- Page 16 of 18
- 13. A is the centre of circle C, with equation $x^2 8x + y^2 + 10y + 1 = 0$.

P, Q and R are points on the circle and the lines l_1, l_2 and l_3 are tangents to the circle at these points respectively.

Line l_2 intersects line l_1 at B and line l_3 at D.



- (a) Find the centre and radius of C.
- (b) Given that the x-coordinate of Q is 10 and that the gradient of AQ is positive, find the y [4] coordinate of Q, explaining your solution.
- (c) Find the equation of l_2 , giving your answer in the form y = mx + b. [4]
- (d) Given that APBQ is a square, find the equation of l_1 in the form y = mx + b. [4]
- (e) l_1 intercepts the y-axis at E. Find the area of triangle EPA.

Total: 19

[4]

[3]

Last updated: July 14, 2022

(Q13 continued)

(Q13 continued)

