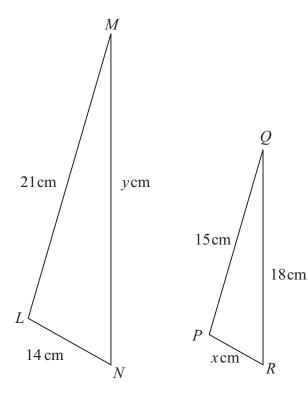
SIMILAR SHAPES

[ESTIMATED TIME: 75 minutes]



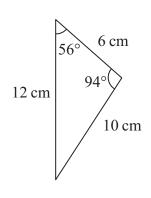
GCSE

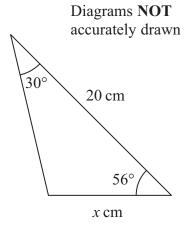
(+ IGCSE) EXAM QUESTION PRACTICE

1. [4 marks]

Here are two similar triangles.

Diagrams **NOT** accurately drawn


LM corresponds to *PQ*. *MN* corresponds to *QR*.


(a) Find the value of x.

$$x = \dots$$
 (2)

(b) Find the value of y.

Here are three similar triangles.

Find the value of

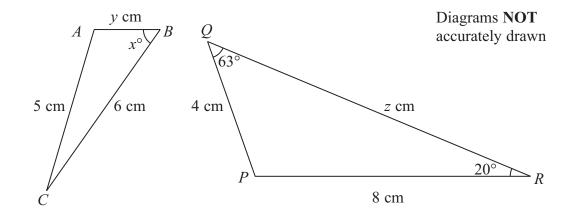
(a) w,

2.

W	=	 		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	
																	((1)	

(b) *x*,

$$x =$$
 (2)


(c) y.

$$y =$$
 (2)

Here are two similar triangles.

AB corresponds to PQ.

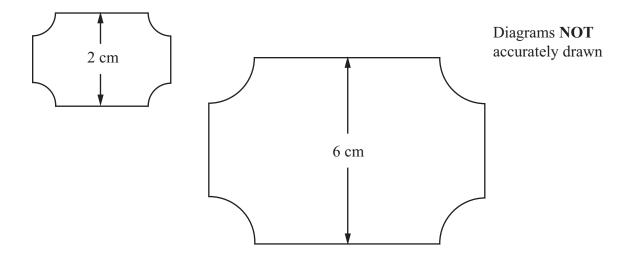
BC corresponds to \widetilde{QR} .

Find the value of

(a) *x*

x = (1)

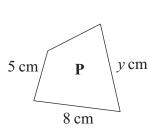
(b) *y*


y = (2)

(c) z

 $z = \dots$ (2)

4. [2 marks]


Here are two supermarket price tickets.

The two supermarket price tickets are mathematically similar.

The area of the smaller ticket is 7 cm². Calculate the area of the larger ticket.

 $.....cm^2 \\$

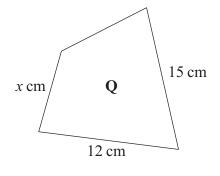



Diagram **NOT** accurately drawn

Quadrilateral ${\bf P}$ is mathematically similar to quadrilateral ${\bf Q}$.

(a) Calculate the value of x.

(b) Calculate the value of *y*.

$$y =$$
(2)

The area of quadrilateral **P** is 60 cm².

(c) Calculate the area of quadrilateral \mathbf{Q} .

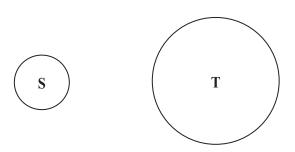


Diagram **NOT** accurately drawn

The area of circle S is 4 cm².

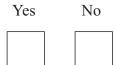
The radius of circle **T** is 3 times the radius of circle **S**.

Work out the area of circle T.

 	 	 								 	cn
 	 	 			٠		 ٠	٠		 • •	CII

7. [3 marks]

20 cm


	15 cm	
10 cm		

	25	cm		

Diagram **NOT** accurately drawn

Are the two rectangles mathematically similar? Tick (\checkmark) the appropriate box.

You must show working to justify your answer.

8. [4 marks]

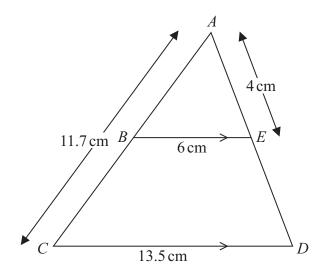


Diagram **NOT** accurately drawn

The diagram shows triangle ACD.

B is a point on AC and E is a point on AD so that BE is parallel to CD.

 $AE = 4 \,\mathrm{cm}$

 $AC = 11.7 \, \text{cm}$

 $BE = 6 \,\mathrm{cm}$

 $CD = 13.5 \, \text{cm}$

(a) Calculate the length of AB.

 	cm
(2)	

(b) Calculate the length of ED.

9. [4 marks]

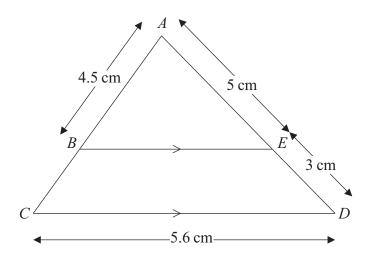


Diagram **NOT** accurately drawn

BE is parallel to CD. AB = 4.5 cm, AE = 5 cm, ED = 3 cm, CD = 5.6 cm.

(a) Calculate the length of BE.

..... cm (2)

(b) Calculate the length of BC.

..... cm (2)

10. [4 marks]

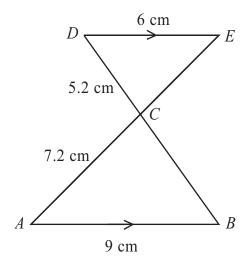


Diagram **NOT** accurately drawn

AB	is	parallel	to	DE

ACE and BCD are straight lines.

AB = 9 cm.

AC = 7.2 cm.

CD = 5.2 cm.

DE = 6 cm.

(a) Calculate the length of BC.

(2)

(b) Calculate the length of CE.

.....cm (2)

ABCD and APQR are two similar quadrilaterals.

$$PQ = 9$$
 cm.

$$B\widetilde{C} = 6$$
 cm.

$$AD = 5$$
 cm.

$$QR = 12 \text{ cm}.$$

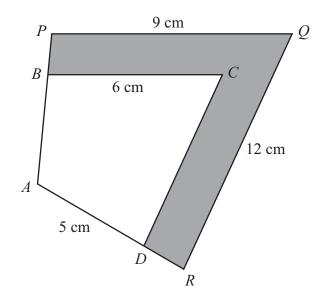
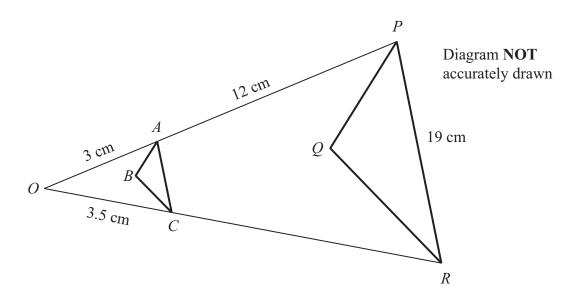


Diagram **NOT** accurately drawn

(a) Find the length of DC.

 	cm
(2)	


(b) Find the length of AR.

The area of the quadrilateral ABCD is 32 cm².

(c) Calculate the area of the shaded region.

Triangle PQR is an enlargement, centre O, of triangle ABC.

OAP and OCR are straight lines.

OA = 3 cm.

AP = 12 cm.

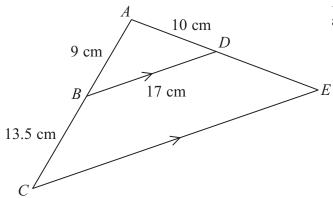
OC = 3.5 cm.

PR = 19 cm.

(a) Work out the length of CR.

......cm

(b) Work out the length of AC.


(3)

The area of triangle ABC is 2 cm²

(c) Work out the area of triangle *PQR*.

.....cm

Diagram NOT accurately drawn

In the diagram ABC and ADE are straight lines. BD is parallel to CE.

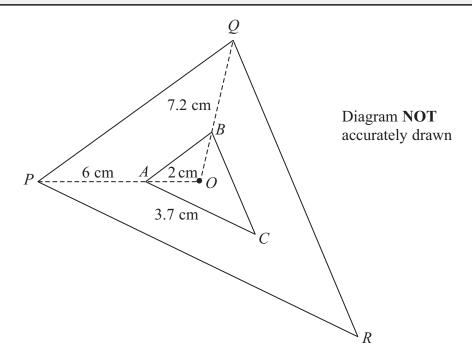
$$AB = 9 \text{ cm}, BC = 13.5 \text{ cm}, AD = 10 \text{ cm}, BD = 17 \text{ cm}$$

(a) Calculate the length of CE.

..... cm **(2)**

(b) Calculate the length of *DE*.

..... cm **(2)**


The area of triangle ABD is 36 cm²

(c) Calculate the area of quadrilateral BDEC.

 cm^2

(3)

14. [7 marks]

Triangle PQR is an enlargement, centre O, of triangle ABC.

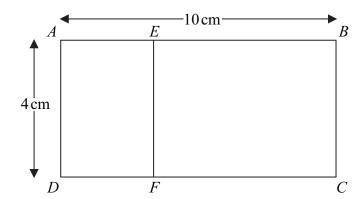
OAP and OBQ are straight lines.

OA = 2 cm.

AP = 6 cm.

BQ = 7.2 cm.

AC = 3.7 cm.


(a) Work out the length of OB.

	cm
(2)	

(b) Work out the length of PR.

Rectangle ABCD is mathematically similar to rectangle DAEF.

AB = 10 cm.

AD = 4 cm.

Work out the area of rectangle DAEF.

..... cm²

16. [3 marks]

The diagram shows two regular hexagons, OABCDE and OFGHIJ.

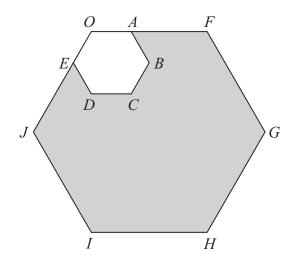


Diagram **NOT** accurately drawn

OAF and OEJ are straight lines. OF = 3 OA.

The area of *OABCDE* is 4 cm².

Calculate the area of the shaded region.

 $..... cm^2$

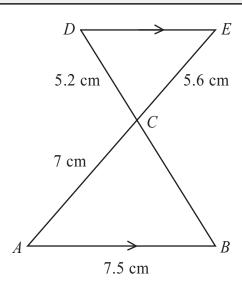


Diagram **NOT** accurately drawn

AB is parallel to DE.

The lines AE and BD intersect at C.

AB = 7.5 cm, AC = 7 cm, CD = 5.2 cm, CE = 5.6 cm.

(a) Calculate the length of BC.

	cm
(2)	

(b) Calculate the length of *DE*.

(c) The area of triangle *ABC* is 21 cm² Calculate the area of triangle *EDC*.