CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/63

Paper 6 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

	···· C -	an and Calub					_
W	Mage 2	speryc.club	Mark Scheme		Syllabusv	1 Paper 6	3
		Cambridge	e IGCSE – October/November 2015	5	0607	63	

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

A INVESTIGATION SECURITY CAMERAS							
Question	Answer		Part Marks				
1 (a) (i)	$\begin{array}{cccc} X & X & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	1					
(ii)	X X X Oe	1					
(iii)	X X X O X O e	1					
(b)	n + 1	1					
2 (a) (i)	$ \begin{array}{c} X \\ \square \\ X \\ X \\ \square \\ X \\ \square \\ X \end{array} \qquad [Minimum =] 4 \\ \square \\ X \end{array} $	1	B1 for diagram and 4				
(ii)	$\begin{array}{c} X \\ X $	1					
(iii)	$\begin{array}{c} X \\ & & X \\ & X \\$	1					
(b)	2 <i>n</i> + 2 oe	1	C opportunity				

WWWagCasperYC.club Mark Scheme Syllabusw1Paper 63 Cambridge IGCSE – October/November 2015 0607 63

A	INVE	STIGAT	ION		S	ECURIT	Y CAN	IERAS		
Question		Answer							Mark	Part Marks
3		9 12						1 1	C opportunity	
4	(a)	One row Three rows Five rows Seven	1 square	Num 2 squares	aber of squa 3 squares 8 8 16	res in each ro 4 squares 10 15 20	w 5 squares 6 12 18 24	n squares 4n + 4	2	B1 for 8, 9 or 10 number cells correct B1 for $4n + 4$ oe
	(b)	rows $\frac{1}{2}(r+1)$	$)n+\frac{1}{2}(r$	+1) oe				oe	1	
	(c)	1, 3, 7,	15						1	C opportunity
5	(a)	10 13							1	C opportunity
	(b)	$\frac{3n}{2}+1$							1	C opportunity
6	(a) Number of squares in each row						2	B1 for 4, 5 or 6 number cells		
			2 squares	4 squares	6 squares	8 squares	<i>n</i> squa	res		correct
		Two rows								B1 for $\frac{9n}{2} + 4$ oe
		Four rows			17	22				
		Six rows		17		31				
		Eight rows		22	31		$\frac{9n}{2}$	⊢ 4		
	(b)	$\frac{1}{2}(r+1)$	$\left(n+\frac{1}{2}r\right)$	oe	•	-			1	
Co	mmunicatio	on seen in	two of 2 (b), 3 . 4(a	c), 5(a). 5	5(b)			1	

		an and C alush				_
W	Mage 4	speryc.club	Mark Scheme	Syllabusv	1 Paper 6	3
		Cambridge	IGCSE – October/November 2015	0607	63	

B MODELLING BACTERIA							
Question	Answer	Mark	Part Marks				
1 (a)	Correct curve between $x = 1$ and $x = 5$	2	B1 for 5 points correctly plotted (within 1 mm)B1 for curve through plotted points (within 1 mm)				
(b)	Answer in range 80 to 100	1					
2 (a)	$[n=] pq^x$	1					
(b)	[q =] 1.48	1FT	FT $n = px^2 + q$ in their (a)				
(c)	[<i>p</i> =] 77.1[]	1FT	C opportunity FT their q in $n = pq^x$ Or their q in $n = px^2 + q$ C opportunity				
(d) (i)	Answer in range 1099 to 1200	1FT	FT <i>their p</i> and <i>their q</i> in non- linear modelsC opportunity				
(ii)	77[.1]	1FT					
(iii)	Correct statement about similarity of answers	1FT	FT <i>their</i> 1(b) and <i>their</i> 2(d)(ii)				

	· · · · · C -	an and C alub					_
w	Wage-5	speryc.club	Mark Scheme		Syllabusv	1 Paper 6	3
Γ		Cambridge	e IGCSE – October/November 2015	5	0607	63	

B MO	DELLING BACTERIA		
Question	Answer	Mark	Part Marks
3 (a)	2.23 2.4[0] 2.57 2.72	2	B1 for accuracy to 3 s.f.andB1 for all correct if rounded
(b)	3[.0] 2.4[]	1	Correct to 1d.p.
(c)		2FT	B1FT for 5 correctly plotted points B1FT for correct ruled line between $x = 1$ and $x = 5$ through (3, <i>their</i> 2.4)
(d) (i)	1.9 to 1.95	1	FT <i>their</i> correct line of best fit if outside range
(ii)	0.15 to 0.17	1	C opportunity
(e)	890 to 1390	1	C opportunity
(f)	79 to 90	1	
4	Correct statement comparing the models	1FT	FT <i>their</i> 3(e) and <i>their</i> 2(d)(i)
Communicati	on seen in two of 2(b) , 2(c) , 2(d)(i) , 3(d)(ii) , 3(e)	1	