CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/63

Paper 6 (Extended), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

WWWagCasper Y C.club Mark Scheme Sylfabrus 1 Paper 63
Cambridge IGCSE - October/November 2014 0607 63

A	INVEST	IGATION THE END RESU	JLT	
1	(a) (i)	$\begin{array}{c} \frac{1}{12} & \text{oe} \\ \frac{1}{12} & \text{oe} \end{array}$	1	C opportunity
	(ii)	$\frac{2}{15} \text{oe}$ $\frac{1}{15} \text{oe}$	1	C opportunity
	(iii)	Any correct pair	1	Any pair of fractions whose denominators are n and $n + 1$ for any integer $n > 0$ Not $\frac{1}{4}$ and $\frac{1}{5}$ Not $\frac{1}{3}$ and $\frac{1}{4}$
	(b) (i)	$\frac{b-a}{ab}$ oe	1	
	(ii)	$\frac{1}{ab}$ oe	1	
	(c)	$\frac{1}{n+1}$	1	

2 (a) (i)	$\frac{12}{35}$ oe	1	C opportunity
(ii)	12, 35, 37 oe	1	C opportunity
(iii)	$\frac{20}{99}$	1	C opportunity
(iv)	Yes oe and correct reason	1FT	FT their $\frac{20}{99}$ e.g. $\sqrt{20^2 + 99^2} = 101$
(b) (i)	$\frac{p+q}{pq}$ isw	1	c.g. \\20 + \(\gamma\gam
(ii)	p+q,pq,[pq+2]	1	
(iii)	$(pq+2)^2 = their(p+q)^2 + their(pq)^2$ $p^2q^2 + 4pq + 4 = p^2 + q^2 + 2pq + p^2q^2$ Correct further step leading to given answer	1 1 1	May be unsimplified
(iv)	q = p + 2 oe $q = p - 2$ oe	1 1	
	Communication seen in at least two of 1a(i), 1a(ii), 2(a)(i), 2a(ii) or 2(a)(iii)	1	

WWAge asper Y C. club Mark Scheme Sylfabrus 1 Paper 63
Cambridge IGCSE - October/November 2014 0607 63

В	MODEL	LING RESCUE MISSION		
1	(a) (i)	Maximums are 10 and 20 and minimum in total is 80	1	
	(ii)	$5x + 7y \ge 35$	1	
	(iii)	3x + 4y < 24	1	
	(b) (i)	7	1	
	(ii)	5	1	If 0 scored in (i) and (ii), SC1 for 8 and 6
	(c)	40x + 65y	1	
2	(a)	Line from (0, 4) to (8, 0)	1	
		Line from (0, 5) to (7, 0)	1FT	
		Line from (0, 6) to (8, 0)	1FT	
		Line $y = their 5$ and line $x = their 7$	1FT	
		Correct region	1	
	(b)	[They are] fractions oe	1	
	(c)	6 1 305	2	B1 for at least 2 correct C opportunity
3		3 3 10	1	
4		Identify one solution using any valid comparison of time and cost.	1FT	e.g. An extra \$10 000 will reduce the time by one hour

W	Mage 51	Mark Scheme	Syllabusw	1 4Paper 6	3
		Cambridge IGCSE – October/November 2014	0607	63	

5	(a)	$5x + 7y + 4z \ge 35$ $10x + 20y + 8z \ge 80$ oe	2	
		$3x + 4y + 2z < 24$ $0 \le x \le 7$ $0 \le y \le 5$		FT their x and y from $1(b)$
		$0 \le z \le 11$ $40x + 65y + 50z$		B1 for any 5 correct
	(b)	e.g. [The graph used in part 2 is] 2 [dimensional; the problem is now] 3 [dimensional]. oe www	1	2 not 3 variables All statements must be valid
		Communication in 2(c)	1	