

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/63

Paper 6 (Extended)

May/June 2016

MARK SCHEME
Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

[Turn over

WWWg &	asper Y C. club Mark Scheme	Syllabus	1 Paper 6	3
	Cambridge IGCSE – May/June 2016	0607	63	

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

nfww not from wrong working

soi seen or implied

A	INVI	ESTIGATION AREAS AND	PERIMET	PERIMETERS				
	Question	Answer	Marks	Part Marks				
1	(a)	30 26	1					
	(b) (i)	6	1					
	(ii)	18	1FT	FT 2 × (<i>their</i> 6) + 6				
	(c) (i)	7x oe	1					
	(ii)	14+2x oe isw	1					
	(iii)	2.8 oe	FT1	FT their c(i) and c(ii) if same form C opportunity				
2	(a) (i)	xy oe	1					
	(ii)	2x+2y oe	1					
	(b)	xy - 2y = 2x	1					
		y(x-2)=2x	1					
3	(a)	2.4	1	C opportunity				
	(b)	-2	1	C opportunity				
	(c)	2 correct curves	2	B1 for each branch SC1 for correct curve but branches joined				
				C opportunity				
	(d)	$[0 \leqslant]x \leqslant 2$	1					

Question	Answer	Marks	Part Marks
4 (a)	xy < 2x + 2y $xy - 2y < 2x$ $y(x-2) < 2x$	1	
(b) (c)	Point clearly between <i>x</i> -axis, <i>x</i> = 2 and curve Valid check using co-ordinates where Area < Perimeter	1	Not dependent on (b)
5	[Yes,] showing solution of 6	1	C opportunity
Communication in 2 from 1(c)(iii), 3(a), 3(b), 3(c) or 5			

B MODELLING HOW MUCH GRASS CAN THE GOAT EAT?					
Ques	Question Answer Marks Part Marks				
1		314 or 314.1	1		
2 (a)		236 or 235.6	1FT	FT $\frac{3}{4}$ (their 314)	
(b)		Quarter circle shown on diagram or 5m radius implied	1	C opportunity	
3 (a)			1	A $\frac{3}{4}$ circle and a $\frac{1}{4}$ circle of smaller radius	
				C opportunity	
(b)		$236 + \pi$ oe or 238.8 or 238.76	2FT	FT their 2(a)	
				M1 for $\frac{1}{4} \times \pi \times 2^2$ oe	
				C opportunity	
4 (a)	(i)	0< x<8	2	B1 for each limit	
	(ii)	$\frac{3}{4}\pi x^2$ oe	1		
(b)	(i)	8 < <i>x</i> < 15	2	B1 for each limit	
	(ii)	$\frac{3}{4}\pi x^2 + \frac{1}{4}\pi(x-8)^2$ oe isw	2FT	FT their (a)(ii)	
		4 4		M1 for $+\frac{1}{4}\pi k^2$	
(c)	(i)	$(their (b)(ii)) + \frac{1}{4}\pi(x-15)^2$	2FT	FT their (b)(ii) M1 for (their (b)(ii)) + $\frac{1}{4}\pi k^2$	
				or $+\frac{1}{4}\pi(x-15)^2$	
				C opportunity	

	···· C-41					_
W	Mag Estable	'y C.Club	Mark Scheme	Syllabuss	1 Paper 6	3
		Caml	oridge IGCSE – May/June 2016	0607	63	

Question	Answer	Marks	Part Marks
(ii) (d)	16.5 [m] 14.1 [m]	1FT 2	FT any model including a term in $(x-a)^2$ C opportunity M1 for attempt at solving with 500 in any model including a term in $(x-a)^2$ C opportunity
Communication in 3 of 2(a), 3(a), 3(b), 4(c)(i), 4(c)(ii) or 4(d)		2	C1 if seen in 2 of these