1 (a) Here are the ingredients needed to make a pasta bake to serve 12 people.

```
250gg butter
600g pasta
460g mushrooms
280g cheese
800 ml milk
```

(i) Find the mass of the cheese as a percentage of the mass of the mushrooms.
\qquad
(ii) Find the mass of butter needed to make a pasta bake to serve 18 people.
(iii) Monica has 2.2 litres of milk and 1.5 kg of each other ingredient.

Calculate the greatest number of people she can serve with pasta bake.
(b) In 2019, a packet of pasta cost $\$ 2.40$.

This was an increase of 25% of the cost of a packet in 2018.
(i) Work out the cost in 2018.

$$
\$
$$

(ii) In 2020, the cost of a packet increased by 15% from the cost in 2019 .

Work out the total percentage increase in the cost of a packet from 2018 to 2020.
\% [3]
(c)
width

NOT TO SCALE

Pasta is sold in packets with width 11.5 cm , correct to the nearest 0.5 cm .
A shop places these packets in a single line on a shelf of length 2 m , correct to the nearest 0.1 m .
Find the maximum number of these packets that will fit along this shelf.
You must show all your working.

2 (a) Simplify fully.
(i) $p^{3} \times p^{11}$
(ii) $\frac{18 m^{6}}{3 m^{2}}$
(iii) $\left(\frac{27 x^{9} y^{27}}{64}\right)^{-\frac{1}{3}}$
(b) A sequence has nth term $3 n^{2}$.

Write down the first 3 terms of this sequence.
(c) Find the nth term for each of these sequences.
(i) $13,16,19,12,25, \ldots$
(ii) $3,17,55,129, \quad 251, \ldots$
(d) Solve.

$$
\frac{3 x-22}{4}=23
$$

$$
\begin{equation*}
x= \tag{3}
\end{equation*}
$$

(e) Use the quadratic formula to solve $3 x^{2}+8 x-20=0$.

Show all your working and give your answers correct to 2 decimal places.
$x=$
$x=$

3 The height, $h \mathrm{~cm}$, of each of 100 plants is recorded.
The table shows information about the heights of these plants.

Height $(h \mathrm{~cm})$	$10<h \leqslant 15$	$15<h \leqslant 25$	$25<h \leqslant 40$	$40<h \leqslant 60$	$60<h \leqslant 70$
Frequency	8	18	28	33	13

(a) Complete the histogram to show this information.

The first two blocks have been drawn for you.

(b) Calculate an estimate of the mean height.

(a) Draw the reflection of triangle T in the line $y=-2$.
(b) Draw the enlargement of triangle T with scale factor $\frac{1}{2}$ and centre of enlargement $(-5,-3)$.
(c) Describe fully the single transformation that maps triangle T onto triangle A.
\qquad
\qquad

NOT TO
SCALE

The diagram shows a water trough in the shape of a prism.
The prism has a cross-section in the shape of an isosceles trapezium.
The trough is completely filled with water.
(a) Show that the volume of water in the trough is 206.4 litres.
(b) The water from the trough is emptied at a rate of 600 ml per second.

Calculate the time taken, in minutes and seconds, for the trough to be emptied.
\qquad minutes \qquad seconds [3]
(c) All the water from the trough is emptied into a vertical cylindrical tank. The depth of the water in the tank is 84 cm .
(i) Calculate the radius of the tank.

(ii) The tank is 60% full.

Calculate the height of the tank.
(d)

NOT TO
SCALE

A steel rod $A M$ is placed inside the empty water trough as shown in the diagram.
A is a vertex at the base of the isosceles trapezium and M is the midpoint of the top edge on the opposite face.

Calculate the length of the steel rod, $A M$.

6 (a) $\quad P=5 k^{2}-7$
(i) Find the value of P when $k=3$.

$$
\begin{equation*}
P= \tag{2}
\end{equation*}
$$

(ii) Rearrange the formula to make k the subject.

$$
k=
$$

(b) (i) Solve.

$$
x-3 \leqslant 5 x+7
$$

(ii) Show your answer to part (b)(i) on the number line.

(c) The line $y=16$ is drawn on the grid.

The region R satisfies the following inequalities.

$$
y \geqslant 16 \quad x>2 \quad 2 x+3 y \geqslant 72 \quad y \leqslant 32-x
$$

(i) By drawing three more lines and shading the region not required, find and label region R.
(ii) Find the integer coordinates (x, y) in the region R that give the maximum value of $2 x+y$.
\qquad .

7 Regan is playing a game with these six number cards.
-3

(a) She takes two cards at random, without replacement, and multiplies the two numbers to give a score.

Find the probability that
(i) the score is 35
(ii) the score is a positive number.
(b) Regan now takes three cards at random from the six cards, without replacement, and adds the three numbers to give a total.

Find the probability that her total is 5 .

A, B and C are points on the circle, centre O.
$D E$ is a tangent to the circle at C.
$A C=10 \mathrm{~cm}, A B=9.5 \mathrm{~cm}$ and $B C=7.7 \mathrm{~cm}$.
(a) Show that angle $A B C=70.2^{\circ}$, correct to 1 decimal place.
（b）Find
（i）angle $A O C$

$$
\text { Angle } A O C=
$$

（ii）angle $A C O$

$$
\begin{equation*}
\text { Angle } A C O= \tag{1}
\end{equation*}
$$

（iii）angle $A C D$ ．
\qquad
Angle $A C D=$
（c）Calculate the radius，$O C$ ，of the circle．

$$
O C=
$$

（d）Calculate the area of triangle $A B C$ as a percentage of the area of the circle．

9 (a) Sketch the following graphs.
On each sketch, indicate any intercepts with the axes.
(i) $3 x-4 y=12$

(ii) $y=x^{2}-3 x-4$

(iii) $y=6^{x}$

(b) (i) Find the derivative, $\frac{\mathrm{d} y}{\mathrm{~d} x}$, of $y=5+8 x-\frac{4}{3} x^{3}$.
(ii) Find the gradient of $y=5+8 x-\frac{4}{3} x^{3}$ at $x=-1$.
(iii) A tangent is drawn to the graph of $y=5+8 x-\frac{4}{3} x^{3}$. The gradient of the tangent is -28 .

Find the coordinates of the two possible points where this tangent meets the graph.

10 (a)

$$
\mathbf{a}=\binom{1}{2} \quad \mathbf{b}=\binom{-3}{5}
$$

(i) On the grid, draw and label vector 2 a.

(ii) On the grid, draw and label vector $(\mathbf{a}-\mathbf{b})$.

(b)

$O A B C$ is a trapezium with $O A$ parallel to $C B$.
M is the midpoint of $C B$ and N is the point on $A B$ such that $A N: N B=1: 2$.
O is the origin, $\overrightarrow{O A}=\mathbf{p}, \overrightarrow{O C}=\mathbf{q}$ and $\overrightarrow{C B}=\frac{3}{4} \mathbf{p}$.
(i) Find, in terms of \mathbf{p} and/or \mathbf{q}, in its simplest form
(a) $\overrightarrow{O B}$

$$
\begin{equation*}
\overrightarrow{O B}= \tag{1}
\end{equation*}
$$

(b) $\overrightarrow{A B}$

$$
\begin{equation*}
\overrightarrow{A B}= \tag{2}
\end{equation*}
$$

(c) $\overrightarrow{M N}$.

$$
\overrightarrow{M N}=
$$

(ii) $O A$ and $M N$ are extended to meet at G.

Find the position vector of G in terms of \mathbf{p}.

