1 (a) Calculate the volume of
(i) a solid cylinder with radius 6 cm and height 14 cm ,
\qquad cm^{3}
(ii) a solid hemisphere with radius 6 cm . [The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]
\qquad
(b)

The cylinder and hemisphere in part (a) are joined to form the solid in the diagram. The solid is made of steel and $1 \mathrm{~cm}^{3}$ of steel has a mass of 7.85 g .
(i) Show that $1 \mathrm{~cm}^{3}$ of steel has a mass of 0.00785 kg .
(ii) Calculate the total mass of the solid.
(c) $2000 \mathrm{~cm}^{3}$ of iron is melted down and some of it is used to make 50 spheres with radius 2 cm .
(i) Calculate the percentage of iron that is left over.
[The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]
\qquad
(ii) The iron left over is then made into a cube.

Calculate the length of an edge of the cube.
(d) A solid cone has radius $3 R \mathrm{~cm}$ and slant height $9 R \mathrm{~cm}$.

A solid cylinder has radius $x \mathrm{~cm}$ and height $7 x \mathrm{~cm}$.
The total surface area of the cone is equal to the total surface area of the cylinder.
Given that $R=k x$, find the value of k.
[The curved surface area, A, of a cone with radius r and slant height l is $A=\pi r l$.]

$$
k=
$$

2 (a) Write
(i) 2994.99 correct to the nearest 10 ,
(ii) 0.983 correct to 1 decimal place,
\qquad
(iii) 2090 correct to 2 significant figures.
\qquad
(b) Write down a prime number between 90 and 100 .
\qquad
(c) Write 2^{-6} as a fraction.
\qquad
(d) Write 0.00701 in standard form.
\qquad
(e) Simplify $1.5 \times 10^{x}+1.5 \times 10^{x-1}$ giving your answer in standard form.
(f) Write $0.3 \dot{7}$ as a fraction.

You must show all your working.

3 (a)

Write down the inequality shown by the number line.
(b) $\quad-3 \leqslant 2 x+3<9$
(i) Solve the inequality.
(ii) Write down all the integer values of x that satisfy the inequality.
(c) Solve the equations.
(i) $3(3-x)-\frac{2(x+2)}{5}=1$

$$
x=
$$

(ii) $\frac{5}{x+3}=\frac{3}{x+5}$

$$
x=
$$

Page 5 of 18

4 (a) (i) Zak invests $\$ 500$ at a rate of 2% per year simple interest.
Calculate the value of Zak's investment at the end of 5 years.

$$
\$
$$

(ii) Yasmin invests $\$ 500$ at a rate of 1.8% per year compound interest.

Calculate the value of Yasmin's investment at the end of 5 years.

$$
\begin{equation*}
\$ \tag{2}
\end{equation*}
$$

(iii) Zak and Yasmin continue with these investments.

How many more complete years is it before the value of Yasmin's investment is greater than the value of Zak's investment?
www.CasperyC.club/0580
(b) Xavier buys a car for $\$ 2500$.

The value of the car decreases exponentially at a rate of 10% each year.
Calculate the value of Xavier's car at the end of 5 years.
Give your answer correct to the nearest dollar.

$$
\$
$$

[3]
(c) The number of a certain type of bacteria increases exponentially at a rate of $r \%$ each day. After 22 days, the number of this bacteria has doubled.

Find the value of r.
$r=$

5 (a) 100 students each record the time, t minutes, taken to eat a pizza. The cumulative frequency diagram shows the results.

Find an estimate of
(i) the median,
\qquad
(ii) the interquartile range,
\qquad $\min [2]$
(iii) the number of students taking more than 11 minutes to eat a pizza.
(b) 150 students each record how far they can throw a tennis ball.

The table shows the results.

Distance $(d$ metres $)$	$0<d \leqslant 20$	$20<d \leqslant 30$	$30<d \leqslant 35$	$35<d \leqslant 45$	$45<d \leqslant 60$
Frequency	4	38	40	53	15

(i) Calculate an estimate of the mean.
(ii) A histogram is drawn to show this information.

The height of the bar representing $30<d \leqslant 35$ is 12 cm .
Calculate the height of each of the other bars.

Distance (d metres $)$	Frequency	Height of bar (cm)
$0<d \leqslant 20$	4	
$20<d \leqslant 30$	38	
$30<d \leqslant 35$	40	12
$35<d \leqslant 45$	53	
$45<d \leqslant 60$	15	

(iii) Two students are chosen at random.

Find the probability that they both threw the ball more than 45 m .
$6 \quad$ (a) $\quad \mathbf{p}=\binom{2}{3} \quad \mathbf{q}=\binom{-1}{1}$

Find
(i) $3 \mathbf{q}$,

(ii) $\mathbf{p}-\mathbf{q}$,

(iii) $|\mathbf{p}|$.
(b) B is the point $(2,7)$ and $\overrightarrow{A B}=\binom{-4}{6}$.

Find the coordinates of A.
\qquad
(c)

In triangle $O G H, M$ is the midpoint of $O H$ and K divides $G H$ in the ratio $5: 2$.
$\overrightarrow{O G}=\mathbf{g}$ and $\overrightarrow{O H}=\mathbf{h}$.
Find $\overrightarrow{M K}$ in terms of \mathbf{g} and \mathbf{h}.
Give your answer in its simplest form.

$$
\begin{equation*}
\overrightarrow{M K}= \tag{4}
\end{equation*}
$$

7
$\mathrm{f}(x)=10-x$
$\mathrm{g}(x)=\frac{2}{x}, \quad x \neq 0$
$h(x)=2^{x}$
$\mathrm{j}(x)=5-2 x$
(a) (i) Find $\mathrm{g}\left(\frac{1}{2}\right)$.
\qquad
(ii) Find $\operatorname{hg}\left(\frac{1}{2}\right)$.
\qquad
(b) Find x when $\mathrm{f}(x)=7$.

$$
\begin{equation*}
x= \tag{1}
\end{equation*}
$$

(c) Find x when $\mathrm{g}(x)=\mathrm{h}(3)$.

$$
\begin{equation*}
x= \tag{2}
\end{equation*}
$$

(d) Find $\mathrm{j}^{-1}(x)$.

$$
\mathrm{j}^{-1}(x)=
$$

(e) Write $\mathrm{f}(x)+\mathrm{g}(x)+1$ as a single fraction in its simplest form.
(f) $\quad(\mathrm{f}(x))^{2}-\mathrm{ff}(x)=a x^{2}+b x+c$

Find the values of a, b and c.

$$
\begin{align*}
& a= \\
& b= \\
& c= \tag{4}
\end{align*}
$$

(g) Find x when $\mathrm{h}^{-1}(x)=10$.

$$
x=
$$

The diagram shows triangle $A B C$ on horizontal ground.
$A C=15 \mathrm{~m}, B C=8 \mathrm{~m}$ and $A B=20 \mathrm{~m}$.
$B P$ and $C Q$ are vertical poles of different heights.
$B P=3 \mathrm{~m}$ and $C Q=4 \mathrm{~m}$.
$A Q$ and $P Q$ are straight wires.
(a) Show that angle $A C B=117.5^{\circ}$, correct to 1 decimal place.
(b) Calculate the area of triangle $A B C$.
m^{2}
(c) Calculate the length of $A Q$.
(d) Calculate the angle of elevation of Q from P.
(e) Another straight wire connects A to the midpoint of $P Q$.

Calculate the angle between this wire and the horizontal ground.

9 (a)

NOT TO
SCALE

The total of the areas of rectangles A and B is $20 \mathrm{~cm}^{2}$.
(i) Show that $3 x^{2}+6 x-22=0$.
(ii) Solve the equation $3 x^{2}+6 x-22=0$, giving your answers correct to 4 significant figures. You must show all your working.

$$
\begin{equation*}
x= \tag{4}
\end{equation*}
$$

\qquad or $x=$
(iii) Find the perimeter of rectangle B.

Page 16 of 18
(b)

The diagram shows two rectangles where $H-h=1$.
By forming a quadratic equation and factorising, find the value of y.

$$
y=
$$

10 (a)

The diagram shows a sketch of the graph of $y=\mathrm{f}(x)$ for $-1.5 \leqslant x \leqslant 6$.
The coordinates of five points on the graph of $y=\mathrm{f}(x)$ are shown on the diagram.
(i) $\mathrm{f}(x)=k$ has two solutions in the interval $-1.5 \leqslant x \leqslant 6$.

Write down a possible integer value of k.

$$
\begin{equation*}
k= \tag{1}
\end{equation*}
$$

(ii) $\mathrm{f}(x)=j$ has no solutions in the interval $-1.5 \leqslant x \leqslant 6$ when $j<a$ or $j>b$.

Find the maximum value of a and the minimum value of b.

$$
\begin{align*}
& a=\ldots . ~
\end{align*}
$$

Page 18 of 18

(b) Find the coordinates of the two stationary points on the graph of $y=x^{6}-6 x^{5}$. You must show all your working.
\qquad
\qquad

