1 (a) Malena has 450 fruit trees.
The fruit trees are in the ratio apple : pear : plum $=8: 7: 3$.
(i) Show that Malena has 200 apple trees.
(ii) Find the number of plum trees.
(iii) Malena wants to increase the number of pear trees by 32%.

Calculate the number of extra pear trees she needs.
(iv) Each apple tree produces 48.5 kg of apples.

The apples have an average mass of 165 g each.
Calculate the total number of apples produced by the 200 trees.
Give your answer correct to the nearest 1000 apples.
(b) Malena's land is valued at three million and seventy-five thousand dollars.
(i) Write this number in figures.
(ii) Write your answer to part (b)(i) in standard form.
\qquad
(c) In 2020, each plum tree produced 37.7 kg of plums.

This was 16% more than in 2019.
Calculate the mass of plums produced by each plum tree in 2019.
(d) Malena invests $\$ 1800$ at a rate of 2.1% per year compound interest.

Calculate the value of her investment at the end of 15 years.

2 (a) The cumulative frequency diagram shows information about the floor area, $a \mathrm{~m}^{2}$, of each of 80 houses.

Use the diagram to find an estimate of
(i) the median,
m^{2}
(ii) the lower quartile,
(iii) the interquartile range,
m^{2} [1]
(iv) the number of houses with a floor area greater than $120 \mathrm{~m}^{2}$.
(b) The information about the 80 floor areas is shown in this frequency table.

Floor area $\left(a \mathrm{~m}^{2}\right)$	$40<a \leqslant 60$	$60<a \leqslant 80$	$80<a \leqslant 100$	$100<a \leqslant 130$	$130<a \leqslant 160$	$160<a \leqslant 200$
Frequency	14	17	18	15	9	7

(i) Calculate an estimate of the mean floor area.
m^{2} [4]
(ii) Complete the histogram to show the information in the frequency table.

(iii) Two of the houses are picked at random.

Find the probability that one of the houses has a floor area greater than $130 \mathrm{~m}^{2}$ and the other has a floor area $60 \mathrm{~m}^{2}$ or less.

3 (a)

NOT TO SCALE
$A B C D E$ is a pentagon.
(i) Calculate $A D$ and show that it rounds to 94.5 m , correct to 1 decimal place.
(ii) Calculate angle $B A C$.

$$
\begin{equation*}
\text { Angle } B A C= \tag{3}
\end{equation*}
$$

(iii) Calculate the largest angle in triangle $C A D$.
(b)

Triangle $P Q R$ has the same area as triangle $L M N$.
Calculate the shortest distance from R to the line $P Q$.

(a) On the grid, draw the image of triangle A after
(i) a translation by the vector $\binom{-4}{5}$,
(ii) a reflection in the line $x=1$,
(iii) an enlargement, scale factor 2 and centre $(-5,-2)$.
(b) Describe fully the single transformation that maps triangle A onto triangle B.
\qquad
\qquad

5 The table shows some values for $y=x^{3}-3 x^{2}+3$.

x	-1	-0.5	0	0.5	1	1.5	2	2.5	3
y		2.125	3	2.375	1		-1	-0.125	

(a) Complete the table.
(b) On the grid, draw the graph of $y=x^{3}-3 x^{2}+3$ for $-1 \leqslant x \leqslant 3$.

[4]
(c) By drawing a suitable straight line on the grid, solve the equation $x^{3}-3 x^{2}+x+1=0$.
\qquad or $x=$ or $x=$
(a) Solve.
(i) $4(2 x-3)=24$

$$
\begin{equation*}
x= \tag{3}
\end{equation*}
$$

(ii) $6 x+14>6$
(b) Rearrange the formula $V=2 x^{3}-3 y^{3}$ to make y the subject.

$$
y=
$$

(c) Show that $(2 n-5)^{2}-13$ is a multiple of 4 for all integer values of n.
（d）The expression $5+12 x-2 x^{2}$ can be written in the form $q-2(x+p)^{2}$ ．
（i）Find the value of p and the value of q ．

$$
p=. ~, ~ q=
$$

\qquad
（ii）Write down the coordinates of the maximum point of the curve $y=5+12 x-2 x^{2}$ ．
\qquad
（e）The energy of a moving object is directly proportional to the square of its speed． The speed of the object is increased by 30% ．

Calculate the percentage increase in the energy of the object．

7 (a) The diagram shows a container for storing grain.
The container is made from a hemisphere, a cylinder and a cone, each with radius 2 m . The height of the cylinder is 5.2 m and the height of the cone is $h \mathrm{~m}$.

NOT TO
(i) Calculate the volume of the hemisphere.

Give your answer as a multiple of π.
[The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]
\qquad
(ii) The total volume of the container is $\frac{88 \pi}{3} \mathrm{~m}^{3}$.

Calculate the value of h.
[The volume, V, of a cone with radius r and height h is $V=\frac{1}{3} \pi r^{2} h$.]

$$
h=
$$

\qquad
(iii) The container is full of grain.

Grain is removed from the container at a rate of 35000 kg per hour. $1 \mathrm{~m}^{3}$ of grain has a mass of 620 kg .

Calculate the time taken to empty the container. Give your answer in hours and minutes.
\qquad
h \qquad \min [3]
(b)

NOT TO
SCALE
A and B are points on a circle, centre O, radius $r \mathrm{~cm}$. The area of the shaded segment is $65 \mathrm{~cm}^{2}$.

Calculate the value of r.

$$
r=
$$

8 （a）Kaito runs along a 12 km path at an average speed of $x \mathrm{~km} / \mathrm{h}$ ．
（i）Write down an expression，in terms of x ，for the number of hours he takes．
\qquad hours
（ii）Yuki takes 1.5 hours longer to walk along the same path as Kaito． She walks at an average speed of $(x-4) \mathrm{km} / \mathrm{h}$ ．

Write down an equation，in terms of x ，and show that it simplifies to $x^{2}-4 x-32=0$ ．
（iii）Solve by factorisation．

$$
x^{2}-4 x-32=0
$$

$$
x=
$$

\qquad or $x=$ \qquad
（iv）Find the number of hours it takes Yuki to walk along the 12 km path．
(b) A bus travels 440 km , correct to the nearest 10 km .

The time taken to complete the journey is 6 hours, correct to the nearest half hour.
Calculate the lower bound of the speed of the bus.

9 (a) F is the point $(5,-2)$ and $\overrightarrow{F G}=\binom{-2}{3}$.
Find
(i) the coordinates of point G,
\qquad
(ii) $5 \overrightarrow{F G}$,
(iii) $|\overrightarrow{F G}|$.
(b)

NOT TO
SCALE
$O A B C$ is a parallelogram.
P is a point on $A C$ and Q is the midpoint of $A B$.
$\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O C}=\mathbf{c}$.
(i) Find, in terms of \mathbf{a} and/or \mathbf{c}
(a) $\overrightarrow{A Q}$,

$$
\begin{equation*}
\overrightarrow{A Q}= \tag{1}
\end{equation*}
$$

(b) $\overrightarrow{O Q}$.

$$
\overrightarrow{O Q}=
$$

(ii) $\overrightarrow{O P}=\frac{2}{3} \mathbf{a}+\frac{1}{3} \mathbf{c}$
(a) Show that O, P and Q lie on a straight line.
(b) Write down the ratio $O P: O Q$.

Give your answer in the form $1: n$.

10 （a）Find the coordinates of the turning points of the graph of $y=x^{3}-12 x+6$ ． You must show all your working．
\qquad
．．）and（
）［5］
（b）Determine whether each turning point is a maximum or a minimum．
Show how you decide．

11 (a)

Triangle $P Q R$ is mathematically similar to triangle $X Y Z$.
(i) Find $Y Z$.

$$
Y Z=
$$

\qquad cm
(ii) The area of triangle $X Y Z$ is $63.6 \mathrm{~cm}^{2}$.

Calculate the area of triangle $P Q R$.
\qquad
(b) Two containers are mathematically similar.

The larger container has a capacity of 64.8 litres and a surface area of $0.792 \mathrm{~m}^{2}$.
The smaller container has a capacity of 37.5 litres.
Calculate the surface area of the smaller container.

