#### Page 1 of 18

[2]

- 1 (a) Malena has 450 fruit trees. The fruit trees are in the ratio apple : pear : plum = 8 : 7 : 3.
  - (i) Show that Malena has 200 apple trees.

(ii) Find the number of plum trees.

......[1]

(iii) Malena wants to increase the number of pear trees by 32%.

Calculate the number of extra pear trees she needs.

.....[2]

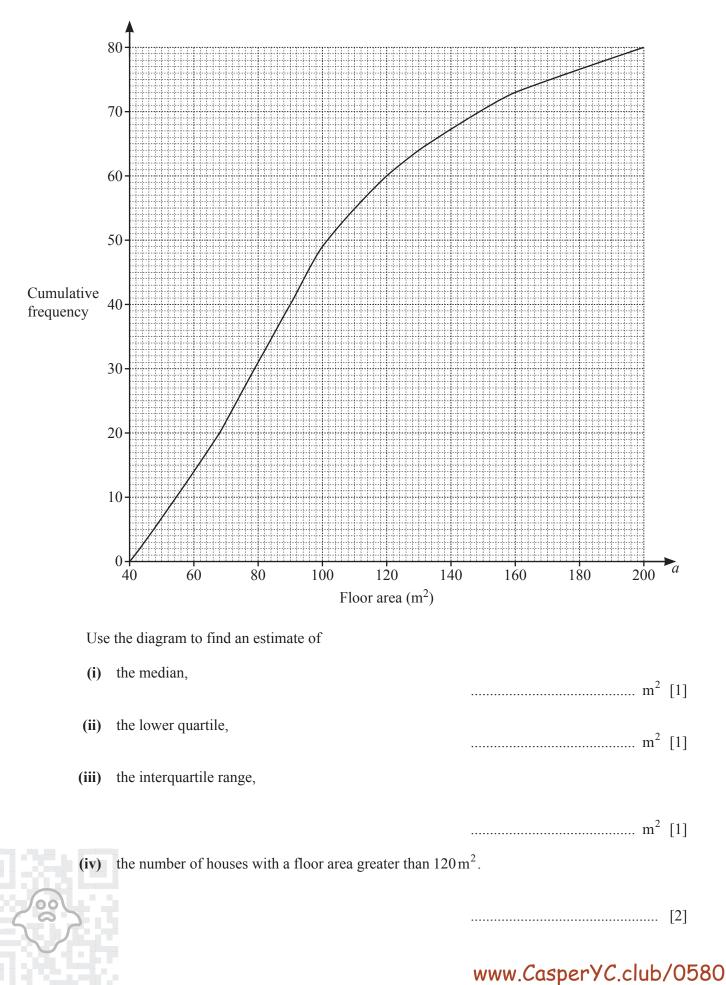
(iv) Each apple tree produces 48.5 kg of apples. The apples have an average mass of 165 g each.

Calculate the total number of apples produced by the 200 trees. Give your answer correct to the nearest 1000 apples.

......[3]



### C 40


|            |      | Page 2 of 18                                                                  | 0580_w21_qp_4: |
|------------|------|-------------------------------------------------------------------------------|----------------|
| <b>(b)</b> | Mal  | ena's land is valued at three million and seventy-five thousand d             | ollars.        |
|            | (i)  | Write this number in figures.                                                 |                |
|            | (ii) | Write your answer to <b>part (b)(i)</b> in standard form.                     | [1]            |
|            |      |                                                                               |                |
| (c)        |      | 020, each plum tree produced 37.7kg of plums.<br>s was 16% more than in 2019. |                |
|            | Calo | culate the mass of plums produced by each plum tree in 2019.                  |                |
|            |      |                                                                               |                |
|            |      |                                                                               |                |
|            |      |                                                                               |                |
|            |      |                                                                               | kg [2]         |
|            |      |                                                                               |                |

(d) Malena invests \$1800 at a rate of 2.1% per year compound interest.

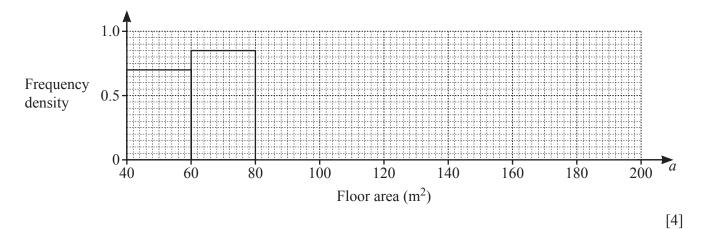
Calculate the value of her investment at the end of 15 years.



2 (a) The cumulative frequency diagram shows information about the floor area,  $a m^2$ , of each of 80 houses.



### Page 4 of 18


(b) The information about the 80 floor areas is shown in this frequency table.

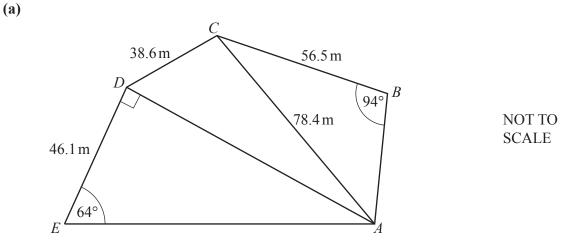
| Floor area $(a m^2)$ | $40 < a \le 60$ | $60 < a \le 80$ | $80 < a \le 100$ | $100 < a \le 130$ | $130 < a \le 160$ | $160 < a \le 200$ |
|----------------------|-----------------|-----------------|------------------|-------------------|-------------------|-------------------|
| Frequency            | 14              | 17              | 18               | 15                | 9                 | 7                 |

(i) Calculate an estimate of the mean floor area.



#### (ii) Complete the histogram to show the information in the frequency table.




(iii) Two of the houses are picked at random.

Find the probability that one of the houses has a floor area greater than  $130 \text{ m}^2$  and the other has a floor area  $60 \text{ m}^2$  or less.



| [3]     |
|---------|
| <br>[2] |

[2]

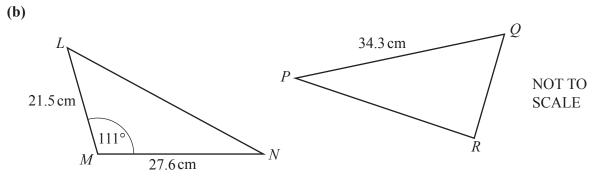


ABCDE is a pentagon.

3

(i) Calculate AD and show that it rounds to 94.5 m, correct to 1 decimal place.

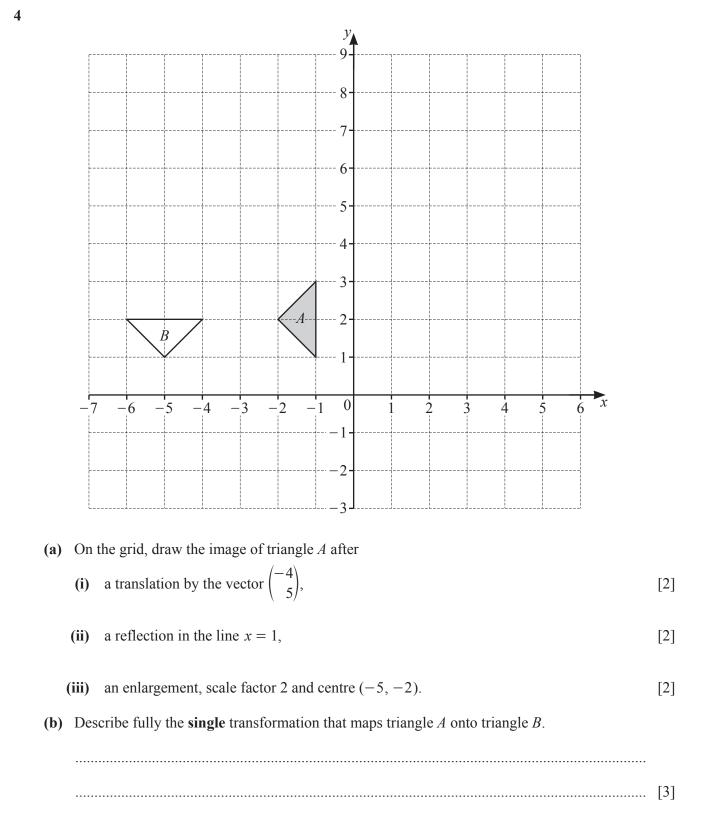
(ii) Calculate angle *BAC*.


Angle  $BAC = \dots$  [3]

(iii) Calculate the largest angle in triangle *CAD*.



......[4]


Page 6 of 18



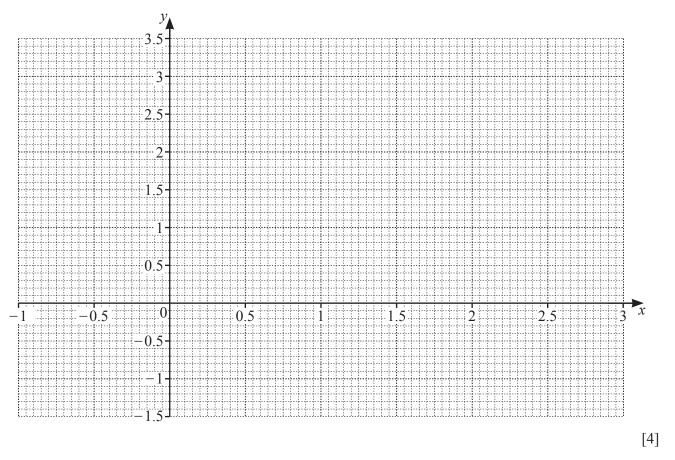
Triangle *PQR* has the same area as triangle *LMN*.

Calculate the shortest distance from R to the line PQ.








# Page 8 of 18

## 5 The table shows some values for $y = x^3 - 3x^2 + 3$ .

| x | -1 | -0.5  | 0 | 0.5   | 1 | 1.5 | 2  | 2.5    | 3 |
|---|----|-------|---|-------|---|-----|----|--------|---|
| У |    | 2.125 | 3 | 2.375 | 1 |     | -1 | -0.125 |   |

(a) Complete the table.

(b) On the grid, draw the graph of  $y = x^3 - 3x^2 + 3$  for  $-1 \le x \le 3$ .



(c) By drawing a suitable straight line on the grid, solve the equation  $x^3 - 3x^2 + x + 1 = 0$ .



 $x = \dots$  or  $x = \dots$  [4]

# www.CasperYC.club/0580

[3]

|                | P       | age 9 of 18 |            | 0580_w21_qp | _42 |
|----------------|---------|-------------|------------|-------------|-----|
| (a) Solve.     |         |             |            |             |     |
| (i) $4(2x-3)$  | 3) = 24 |             |            |             |     |
|                |         |             |            |             |     |
|                |         |             |            |             |     |
|                |         |             |            |             |     |
|                |         |             | <i>x</i> = |             | [3] |
| (ii) $6x + 14$ | > 6     |             |            |             | [9] |
| (ii) $0x + 14$ | ~ 0     |             |            |             |     |
|                |         |             |            |             |     |
|                |         |             |            |             |     |
|                |         |             |            |             |     |
|                |         |             |            |             | [2] |

(b) Rearrange the formula  $V = 2x^3 - 3y^3$  to make y the subject.

y = ......[3]

(c) Show that  $(2n-5)^2 - 13$  is a multiple of 4 for all integer values of *n*.



6

[3]

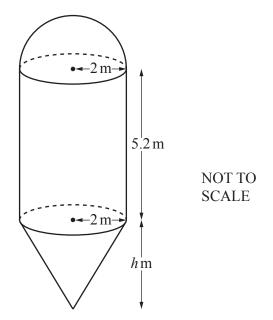
#### Page 10 of 18

- (d) The expression  $5+12x-2x^2$  can be written in the form  $q-2(x+p)^2$ .
  - (i) Find the value of p and the value of q.

 $p = \dots, q = \dots$  [3]

(ii) Write down the coordinates of the maximum point of the curve  $y = 5 + 12x - 2x^2$ .

(.....) [1]


(e) The energy of a moving object is directly proportional to the square of its speed. The speed of the object is increased by 30%.

Calculate the percentage increase in the energy of the object.



7 (a) The diagram shows a container for storing grain.

The container is made from a hemisphere, a cylinder and a cone, each with radius 2 m. The height of the cylinder is 5.2 m and the height of the cone is h m.



(i) Calculate the volume of the hemisphere. Give your answer as a multiple of  $\pi$ .

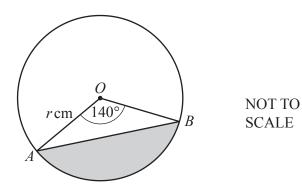
[The volume, V, of a sphere with radius r is  $V = \frac{4}{3}\pi r^3$ .]

(ii) The total volume of the container is  $\frac{88\pi}{3}$  m<sup>3</sup>. Calculate the value of *h*.

[The volume, V, of a cone with radius r and height h is  $V = \frac{1}{3}\pi r^2 h$ .]



 $h = \dots [4]$ 


#### Page 12 of 18

(iii) The container is full of grain. Grain is removed from the container at a rate of  $35\,000\,\text{kg}$  per hour.  $1\,\text{m}^3$  of grain has a mass of  $620\,\text{kg}$ .

Calculate the time taken to empty the container. Give your answer in hours and minutes.

...... h ...... min [3]

**(b)** 



A and B are points on a circle, centre O, radius r cm. The area of the shaded segment is 65 cm<sup>2</sup>.

Calculate the value of *r*.



| r = |  | [4] |
|-----|--|-----|
|-----|--|-----|

#### Page 13 of 18

- 8 (a) Kaito runs along a 12 km path at an average speed of x km/h.
  - (i) Write down an expression, in terms of x, for the number of hours he takes.
    - ...... hours [1]
  - (ii) Yuki takes 1.5 hours longer to walk along the same path as Kaito. She walks at an average speed of (x-4) km/h.

Write down an equation, in terms of x, and show that it simplifies to  $x^2 - 4x - 32 = 0$ .

[4]

(iii) Solve by factorisation.

 $x = \dots$  or  $x = \dots$  [3]

(iv) Find the number of hours it takes Yuki to walk along the 12 km path.

 $x^2 - 4x - 32 = 0$ 

...... hours [2]



### Page 14 of 18

(b) A bus travels 440 km, correct to the nearest 10 km. The time taken to complete the journey is 6 hours, correct to the nearest half hour.

Calculate the lower bound of the speed of the bus.

..... km/h [3]



- 9 (a) F is the point (5, -2) and  $\overrightarrow{FG} = \begin{pmatrix} -2\\ 3 \end{pmatrix}$ . Find
  - (i) the coordinates of point G,

(.....) [1]

(ii)  $5\overrightarrow{FG}$ ,

) [1]

(iii)  $|\overrightarrow{FG}|$ .

.....[2]





*OABC* is a parallelogram. <u>*P*</u> is a point on <u>*AC*</u> and <u>*Q*</u> is the midpoint of <u>*AB*</u>.  $\overrightarrow{OA} = \mathbf{a}$  and  $\overrightarrow{OC} = \mathbf{c}$ .

(i) Find, in terms of **a** and/or **c** 

(a) 
$$\overrightarrow{AQ}$$
,

 $\overrightarrow{AQ} = \dots \qquad [1]$ 



| $\overrightarrow{OQ}$ = | ] |
|-------------------------|---|
|-------------------------|---|

(ii) 
$$\overrightarrow{OP} = \frac{2}{3}\mathbf{a} + \frac{1}{3}\mathbf{c}$$

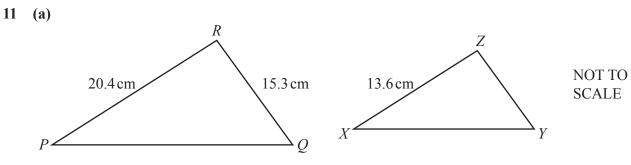
(a) Show that *O*, *P* and *Q* lie on a straight line.

- (b) Write down the ratio OP : OQ. Give your answer in the form 1 : n.
- 1:.....[1]

www.CasperYC.club/0580

[2]

### Page 17 of 18


10 (a) Find the coordinates of the turning points of the graph of  $y = x^3 - 12x + 6$ . You must show all your working.

(.....) and (.....) [5]

(b) Determine whether each turning point is a maximum or a minimum. Show how you decide.



[3]



Triangle PQR is mathematically similar to triangle XYZ.

(i) Find YZ.

- YZ = ..... cm [2]
- (ii) The area of triangle XYZ is  $63.6 \text{ cm}^2$ .

Calculate the area of triangle PQR.

..... cm<sup>2</sup> [3]

(b) Two containers are mathematically similar. The larger container has a capacity of 64.8 litres and a surface area of  $0.792 \text{ m}^2$ . The smaller container has a capacity of 37.5 litres.

Calculate the surface area of the smaller container.

