

NOT TO SCALE

The diagram shows a brick in the shape of a cuboid.

(i) Calculate the total surface area of the brick.

	cm^2	[3]
--	--------	-----

(ii) The density of the brick is $1.9 \,\mathrm{g/cm^3}$.

Work out the mass of the brick. Give your answer in kilograms. [Density = mass ÷ volume]

kσ	[3]
 115	Γ_{\sim}

(b) 9000 bricks are needed to build a house. 200 bricks cost \$175.

Work out the cost of the bricks needed to build 5 houses.

\$[3]

(c)	Saskia builds a wall using 1500 bricks.
` /	She can build at the rate of 40 bricks each hour.
	She works for 9 hours each day.
	Saskia starts work on 6 July and works every day until the wall is completed

Find the date when she completes the wall.

 [3]

(d) Rafa has a cylindrical tank.

The cylinder has a height of 105 cm and a diameter of 45 cm.

Calculate the capacity of the tank in litres.

- 2 Bob, Chao and Mei take part in a run for charity.
 - (a) Their times to complete the run are in the ratio Bob: Chao: Mei = 4:5:7.
 - (i) Find Chao's time as a percentage of Mei's time.

0/0	[1]
 /0	

(ii) Bob's time for the run is 55 minutes 40 seconds.

Find Mei's time for the run. Give your answer in minutes and seconds.

s [3	31	S	min

- **(b)** Chao collects \$47.50 for charity.
 - (i) Bob collects 28% more than Chao.

Find the amount Bob collects.

(ii) Chao collects 60% less than Mei.

Find how much more money Mei collects than Chao.

(c) When running, Chao has a stride length of 70 cm, correct to the nearest 5 cm. Chao runs a distance of 11.2 km, correct to the nearest 0.1 km.

Work out the minimum number of strides that Chao could take to complete this distance.

 [4]
 L .

(d) In 2015, a charity raised a total of \$1.6 million.

After 2015, this amount increased exponentially by 2.4% each year for the next 5 years.

Work out the amount raised by the charity in 2020.

\$ million [2]

3 The cumulative frequency diagram shows information about the mass, $m \log n$, of each of 80 boys.

(a)

30 40 50 60 70 80 90 m

Mass (kg)

On the grid, draw a box-and-whisker plot to show the information in the cumulative frequency diagram. [4]

- (b) Use the cumulative frequency diagram to find an estimate of
 - (i) the 30th percentile,

	kg	[2]
--	----	-----

(ii) the number of boys with a mass greater than 75 kg.

(c) (i) Use the cumulative frequency diagram to complete this frequency table.

Mass (m kg)	$30 < m \leqslant 40$	$40 < m \leqslant 50$	$50 < m \leqslant 60$	$60 < m \leqslant 70$	$70 < m \leqslant 80$	$80 < m \leqslant 90$
Frequency	8	12			14	10

[1]

(ii) Calculate an estimate of the mean mass of the boys.

Kg

(iii) Two boys are chosen at random from those with a mass greater than 70 kg.

Find the probability that one of them has a mass greater than $80\,\mathrm{kg}$ and the other has a mass of $80\,\mathrm{kg}$ or less.

.....[3]

- **4** (a) Solve.
 - (i) 6(7-2x) = 3x 8

(ii) $\frac{2x}{x-5} = \frac{2}{3}$

 $x = \dots$ [3]

x = [3]

(i) $2x^2 - 288y^2$

(b) Factorise completely.

.....[3]

(ii) $5x^2 + 17x - 40$

.....[2]

(c) Solve $x^3 + 4x^2 - 17x = x^3 - 9$. You must show all your working and give your answers correct to 2 decimal places.

$x = \dots $ or $x = \dots $ [5]	x	=		or $x =$		[5]	
----------------------------------	---	---	--	----------	--	-----	--

NOT TO SCALE

A, B, C and D are points on a circle, centre O. Angle $COD = 124^{\circ}$ and angle $BCO = 35^{\circ}$.

(i) Work out angle *CBD*. Give a geometrical reason for your answer.

Angle <i>CBD</i> =	because	
-		
		[2]

(ii) Work out angle *BAD*. Give a geometrical reason for each step of your working.

Angle $BAD = \dots$	because	
		F 43
		[4]

(b)

NOT TO SCALE

P, Q, R and S are points on a circle, centre O. QS is a diameter. Angle $PRS = 42^{\circ}$ and PQ = 5.9 cm.

Calculate the circumference of the circle.

..... cm [5]

6 The table shows some values for $y = x^2 - \frac{3}{2x}$, $x \ne 0$, given correct to 1 decimal place.

x	-3	-2	-1	-0.5	-0.2	0.2	0.5	1	2	3
у			2.5	3.3	7.5	-7.5	-2.8	-0.5	3.3	

(a) (i) Complete the table.

[3]

(ii) On the grid, draw the graph of $y = x^2 - \frac{3}{2x}$ for $-3 \le x \le -0.2$ and $0.2 \le x \le 3$.

(b) By drawing a suitable straight line on the grid, solve the equation $x^2 - \frac{3}{2x} = \frac{24}{5} - 2x$ for $-3 \le x \le -0.2$ and $0.2 \le x \le 3$.

x = or x = [4]

(c) The solutions to the equation $x^2 - \frac{3}{2x} = \frac{24}{5} - 2x$ are also the solutions to an equation of the form $ax^3 + bx^2 + cx - 15 = 0$ where a, b and c are integers.

Find the values of a, b and c.

$$c = \dots$$
 [4]

- (i) On the grid, draw the image of
 - (a) shape A after an enlargement, scale factor 2, centre (0, 1), [2]
 - (b) shape A after a reflection in the line y = x 1. [3]
- (ii) Describe fully the **single** transformation that maps shape A onto shape B.

______[3

(b)

OABC is a trapezium and O is the origin. M is the midpoint of AB.

$$\overrightarrow{OA} = \mathbf{p}, \ \overrightarrow{OC} = \mathbf{q} \ \text{and} \ OA = 2CB.$$

Find, in terms of \mathbf{p} and \mathbf{q} , the position vector of M. Give your answer in its simplest form.

 [3]

8 (a) f(x) = 3 - 5x

(i) Find x when f(x) = -5.

 $x = \dots$ [2]

(ii) Find $f^{-1}(x)$.

 $f^{-1}(x) = \dots [2]$

- **(b)** $g(x) = 18 3x x^2$
 - (i) Write g(x) in the form $b (a+x)^2$.

.....[3]

(ii) Sketch the graph of y = g(x). On your sketch, show the coordinates of the turning point.

(iii) Find the equation of the tangent to the graph of $y = 18 - 3x - x^2$ at x = 4. Give your answer in the form y = mx + c.

This rectangle has perimeter 20 cm.

Find the value of x.

(b)

NOT TO SCALE

This rhombus has perimeter 20 cm and angle y is obtuse. M is the midpoint of one of the sides.

Find the value of *y*.

$$y = \dots$$
 [5]

(c)

NOT TO SCALE

This sector of a circle has radius r and perimeter 20 cm.

Find the value of z.

