1 (a)

(i)	Describe fully the single transformation	on that maps triangle T onto triangle P .
` '	, ,	1 &

......[2]

(ii) Translate triangle T by the vector $\begin{pmatrix} -2 \\ -5 \end{pmatrix}$. [2]

(iii) Rotate triangle T through 90° anticlockwise about (0, 0). [2]

(iv) Enlarge triangle T by scale factor $-\frac{1}{2}$ with centre (0, 0). [2]

(b)

NOT TO SCALE

(i) Find the column vector \overrightarrow{AB} .

$$\overrightarrow{AB} = \left(\right)$$
 [1]

(ii) Find $|\overrightarrow{AB}|$.

$$\left| \overrightarrow{AB} \right| = \dots$$
 [2]

(iii) B is the mid-point of the line AC.

Find the co-ordinates of *C*.

(iv) Find the equation of the straight line that passes through A and B.

.....[3]

(v) The straight line that passes through A and B cuts the y-axis at D.

Write down the co-ordinates of D.

(......) [1]

2	(a)		chool has 240 students. ratio girls: boys = 25:23.	
		(i)	Show that the number of boys is 115.	
				[1]
		(ii)	One day, there are 15 girls absent and 15 boys absent.	
			Find the ratio girls: boys in school on this day. Give your answer in its simplest form.	
			: :	. [2]
		(iii)	Next year, the number of students will increase by 15%.	
			Calculate the number of students next year.	
				. [2]
		(iv)	Since the school was opened, the number of students has increased by 60%. There are now 240 students.	
			Calculate the number of students when the school was opened.	

(b) The population of a city is increasing exponentially at a rate of 2% each year. The population now is 256000.

Calculate the population after 30 years. Give your answer correct to the nearest thousand.

[3
 12

(c) A bacteria population increases exponentially at a rate of r% each day. After 32 days, the population has increased by 309%.

Find the value of r.

$$r =$$
 [3]

3 (a)

NOT TO SCALE

The diagram shows a solid cone.

The radius is 8 cm and the slant height is 17 cm.

(i) Calculate the curved surface area of the cone.

[The curved surface area, A, of a cone with radius r and slant height l is $A = \pi r l$.]

..... cm² [2]

(ii) Calculate the volume of the cone.

[The volume, V, of a cone with radius r and height h is $V = \frac{1}{3}\pi r^2 h$.]

..... cm³ [4]

(iii) The cone is made of wood and 1 cm³ of the wood has a mass of 0.8 g.

Calculate the mass of the cone.

..... g [1]

(iv) The cone is placed in a box.

The total mass of the cone and the box is 1.2 kg.

Calculate the mass of the box. Give your answer in grams.

..... g [1]

(b)

NOT TO SCALE

The diagram shows a solid cylinder and a solid sphere.

The cylinder has radius 3r and height 8r.

The sphere has radius r.

(i) Find the volume of the sphere as a fraction of the volume of the cylinder. Give your answer in its lowest terms.

[The volume, V, of a sphere with radius r is $V = \frac{4}{3}\pi r^3$.]

.....[4]

(ii) The surface area of the sphere is 81π cm².

Find the **curved** surface area of the cylinder.

Give your answer in terms of π .

[The surface area, A, of a sphere with radius r is $A = 4\pi r^2$.]

..... cm² [4]

4 $f(x) = \frac{x^2}{4} - \frac{4}{x}, x \neq 0$

(a) Complete the table for f(x).

x	0.5	1	2	3	4	5	6
f(x)	-7.9	-3.8		0.9		5.5	8.3

[2]

(b) The graph of y = f(x) for $-6 \le x \le -0.5$ is drawn on the grid.

On the same grid, draw the graph of y = f(x) for $0.5 \le x \le 6$.

[3]

(c) By drawing a suitable tangent, estimate the gradient of the graph of y = f(x) at the point (-4, 5).

.....[3]

(d)
$$g(x) = \frac{9}{x}, x \neq 0$$

Complete the table for g(x).

х	-4	-3	-2	-1	1	2	3	4
g(x)	-2.3		-4.5	-9	9	4.5		2.3

[1]

- (e) On the same grid, draw the graph of y = g(x) for $-4 \le x \le -1$ and $1 \le x \le 4$. [4]
- (f) (i) Use your graphs to find the value of x when f(x) = g(x).

$$x =$$
 [1]

(ii) Write down an inequality to show the **positive** values of x for which f(x) > g(x).

.....[1]

(g) The exact answer to part (f)(i) is $\sqrt[3]{k}$.

Use algebra to find the value of k.

k =[2]

5 (a) A factory recycles metal.

The mass, *x* tonnes, of metal is measured each week.

The table shows the results for 52 weeks.

Mass (x tonnes)	$100 < x \le 200$	$200 < x \le 250$	$250 < x \le 300$	$300 < x \le 500$
Frequency	8	20	12	12

(i) Calculate an estimate of the mean.

..... tonnes [4]

On the grid, draw a histogram to show the information in the table.

[4]

(b) Another factory also recycles metal.

The mass, x tonnes, of metal is measured each day for a number of days.

The cumulative frequency diagram shows the results.

(i) For how many days was the mass measured?

[1]

(ii) Find an estimate of the median.

..... tonnes [1]

(iii) Find an estimate of the upper quartile.

..... tonnes [1]

(iv) Find an estimate of the interquartile range.

.....tonnes [1]

(v) Find an estimate of the number of days when the mass was greater than 20 tonnes.

.....[2]

6

NOT TO SCALE

(a) Calculate angle ACB.

(b) Calculate angle *ACD*.

Angle $ACD = \dots [4]$

(c) Calculate the area of the quadrilateral *ABCD*.

 	cm ² [3]

[1]

7

 $\operatorname{Bag} B$

Bag *A* contains 3 black balls and 2 white balls. Bag *B* contains 1 black ball and 3 white balls.

- (a) A ball is taken at random from each bag.
 - (i) Show that a black ball is more likely to be taken from bag A than from bag B.

(ii) Find the probability that the two balls have different colours.

																									Г	- /	,	٦
														 					•		•				ı)	

(b) The balls are returned to their original bags. Three balls are taken at random from bag A, without replacement.

Find the probability that

(i) they are all black,

.....[2]

(ii) they are all white.

.....[1]

(c) The balls are returned to their original bags.

A ball is taken at random from bag A and its colour is recorded.

This ball is then placed in bag B.

A ball is then taken at random from bag B.

Find the probability that the ball taken from bag B has a different colour to the ball taken from bag A.

.....[3]

8 (a)

NOT TO SCALE

In the diagram, AB and CD are parallel. AD and BC intersect at right angles at the point X. AB = 10 cm, CD = 5 cm, AX = 8 cm and BX = 6 cm.

(i) Use similar triangles to calculate DX.

 $DX = \dots$ cm [2]

(ii) Calculate angle *XAB*.

Angle $XAB = \dots$ [2]

(b)

NOT TO SCALE

P, Q, R, S and T lie on the circle, centre O. Angle $PST = 75^{\circ}$ and angle $QTS = 85^{\circ}$.

Find the values of v, w, x and y.

<i>y</i> =	=	• •	 ••	• • •	 	 	 •	•	• •	••	• •	• •	• •	•	• •	• •	• •	• •	•	 	••			
v =	=	•••	 		 	 	 							•						 				
r :	=		 		 	 	 							•		••				 				
<i>y</i> =	=		 		 	 	 													 		Γ	6	1

(c) Two containers are mathematically similar.

The surface area of the larger container is $226\,\mathrm{cm}^2$ and the surface area of the smaller container is $94\,\mathrm{cm}^2$.

The volume of the larger container is 680 cm³.

Find the volume of the smaller container.

..... cm^3 [3]

$$f(x) = 3x + 4$$

$$g(x) = 2x - 1 \qquad h(x) = 3^x$$

$$h(x) = 3^{-1}$$

(a) Find $g\left(\frac{1}{2}\right)$.

.....[1]

(b) Find fh(-1).

(c) Find $g^{-1}(x)$.

 $g^{-1}(x) =$ [2]

(d) Find ff(x) in its simplest form.

.....[2]

(e) Find $(f(x))^2$ in the form $ax^2 + bx + c$.

(f) Find x when $h^{-1}(x) = g(2)$.

$$x =$$
 [2]

(a) Find the next term and the *n*th term of this sequence.

 $\frac{3}{5}$, $\frac{4}{7}$, $\frac{5}{9}$, $\frac{6}{11}$, $\frac{7}{13}$, ...

Next term =

(b) Find the *n*th term of each sequence.

.....[2]

9, 28, 65, (ii) 2, 126,

.....[2]

