1 (a)

(i) Describe fully the single transformation that maps triangle $T$ onto triangle $P$.
$\qquad$
$\qquad$
(ii) Translate triangle $T$ by the vector $\binom{-2}{-5}$.
(iii) Rotate triangle $T$ through $90^{\circ}$ anticlockwise about $(0,0)$.
(iv) Enlarge triangle $T$ by scale factor $-\frac{1}{2}$ with centre $(0,0)$.
(b)

(i) Find the column vector $\overrightarrow{A B}$.

$$
\begin{equation*}
\overrightarrow{A B}=( \tag{1}
\end{equation*}
$$

(ii) Find $|\overrightarrow{A B}|$.

$$
|\overrightarrow{A B}|=
$$

(iii) $B$ is the mid-point of the line $A C$.

Find the co-ordinates of $C$.
( ........................ ,
) [2]
(iv) Find the equation of the straight line that passes through $A$ and $B$.
(v) The straight line that passes through $A$ and $B$ cuts the $y$-axis at $D$.

Write down the co-ordinates of $D$.
(. $\qquad$

2 (a) A school has 240 students.
The ratio girls: boys $=25: 23$.
(i) Show that the number of boys is 115 .
(ii) One day, there are 15 girls absent and 15 boys absent.

Find the ratio girls : boys in school on this day.
Give your answer in its simplest form.
$\qquad$
(iii) Next year, the number of students will increase by $15 \%$.

Calculate the number of students next year.
(iv) Since the school was opened, the number of students has increased by $60 \%$. There are now 240 students.

Calculate the number of students when the school was opened.
(b) The population of a city is increasing exponentially at a rate of $2 \%$ each year. The population now is 256000 .

Calculate the population after 30 years.
Give your answer correct to the nearest thousand.
(c) A bacteria population increases exponentially at a rate of $r \%$ each day.

After 32 days, the population has increased by $309 \%$.
Find the value of $r$.

$$
r=
$$

3 (a)


NOT TO
SCALE

The diagram shows a solid cone.
The radius is 8 cm and the slant height is 17 cm .
(i) Calculate the curved surface area of the cone.
[The curved surface area, $A$, of a cone with radius $r$ and slant height $l$ is $A=\pi r l$.]
$\qquad$
(ii) Calculate the volume of the cone.
[The volume, $V$, of a cone with radius $r$ and height $h$ is $V=\frac{1}{3} \pi r^{2} h$.]
$\qquad$
(iii) The cone is made of wood and $1 \mathrm{~cm}^{3}$ of the wood has a mass of 0.8 g .

Calculate the mass of the cone.
(iv) The cone is placed in a box.

The total mass of the cone and the box is 1.2 kg .
Calculate the mass of the box.
Give your answer in grams.
(b)


NOT TO SCALE

The diagram shows a solid cylinder and a solid sphere.
The cylinder has radius $3 r$ and height $8 r$.
The sphere has radius $r$.
(i) Find the volume of the sphere as a fraction of the volume of the cylinder.

Give your answer in its lowest terms.
[The volume, $V$, of a sphere with radius $r$ is $V=\frac{4}{3} \pi r^{3}$.]
(ii) The surface area of the sphere is $81 \pi \mathrm{~cm}^{2}$.

Find the curved surface area of the cylinder.
Give your answer in terms of $\pi$.
[The surface area, $A$, of a sphere with radius $r$ is $A=4 \pi r^{2}$.]

4

$$
\mathrm{f}(x)=\frac{x^{2}}{4}-\frac{4}{x}, x \neq 0
$$

(a) Complete the table for $\mathrm{f}(x)$.

| $x$ | 0.5 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}(x)$ | -7.9 | -3.8 |  | 0.9 |  | 5.5 | 8.3 |

(b) The graph of $y=\mathrm{f}(x)$ for $-6 \leqslant x \leqslant-0.5$ is drawn on the grid.


On the same grid, draw the graph of $y=\mathrm{f}(x)$ for $0.5 \leqslant x \leqslant 6$.
(c) By drawing a suitable tangent, estimate the gradient of the graph of $y=\mathrm{f}(x)$ at the point $(-4,5)$.
(d) $\mathrm{g}(x)=\frac{9}{x}, x \neq 0$

Complete the table for $\mathrm{g}(x)$.

| $x$ | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~g}(x)$ | -2.3 |  | -4.5 | -9 | 9 | 4.5 |  | 2.3 |

(e) On the same grid, draw the graph of $y=\mathrm{g}(x)$ for $-4 \leqslant x \leqslant-1$ and $1 \leqslant x \leqslant 4$.
(f) (i) Use your graphs to find the value of $x$ when $\mathrm{f}(x)=\mathrm{g}(x)$.

$$
x=
$$

(ii) Write down an inequality to show the positive values of $x$ for which $\mathrm{f}(x)>\mathrm{g}(x)$.
(g) The exact answer to part (f)(i) is $\sqrt[3]{k}$.

Use algebra to find the value of $k$.

$$
k=.
$$

5 (a) A factory recycles metal.
The mass, $x$ tonnes, of metal is measured each week.
The table shows the results for 52 weeks.

| Mass $(x$ tonnes $)$ | $100<x \leqslant 200$ | $200<x \leqslant 250$ | $250<x \leqslant 300$ | $300<x \leqslant 500$ |
| :--- | :---: | :---: | :---: | :---: |
| Frequency | 8 | 20 | 12 | 12 |

(i) Calculate an estimate of the mean.
$\qquad$ tonnes [4]
(ii)


On the grid, draw a histogram to show the information in the table.
(b) Another factory also recycles metal.

The mass, $x$ tonnes, of metal is measured each day for a number of days.
The cumulative frequency diagram shows the results.

(i) For how many days was the mass measured?
(ii) Find an estimate of the median.
$\qquad$
(iii) Find an estimate of the upper quartile.
$\qquad$
(iv) Find an estimate of the interquartile range.
$\qquad$
(v) Find an estimate of the number of days when the mass was greater than 20 tonnes.

6


NOT TO
SCALE
(a) Calculate angle $A C B$.

Angle $A C B=$
(b) Calculate angle $A C D$.
(c) Calculate the area of the quadrilateral $A B C D$.
$\mathrm{cm}^{2}$ [3]

7

$\operatorname{Bag} A$


Bag $B$

Bag $A$ contains 3 black balls and 2 white balls.
Bag $B$ contains 1 black ball and 3 white balls.
(a) A ball is taken at random from each bag.
(i) Show that a black ball is more likely to be taken from $\operatorname{bag} A$ than from $\operatorname{bag} B$.
(ii) Find the probability that the two balls have different colours.
(b) The balls are returned to their original bags.

Three balls are taken at random from bag $A$, without replacement.
Find the probability that
(i) they are all black,
(ii) they are all white.
(c) The balls are returned to their original bags.

A ball is taken at random from $\operatorname{bag} A$ and its colour is recorded.
This ball is then placed in bag $B$.
A ball is then taken at random from $\operatorname{bag} B$.
Find the probability that the ball taken from bag $B$ has a different colour to the ball taken from bag $A$.

8 (a)


NOT TO SCALE

In the diagram, $A B$ and $C D$ are parallel.
$A D$ and $B C$ intersect at right angles at the point $X$.
$A B=10 \mathrm{~cm}, C D=5 \mathrm{~cm}, A X=8 \mathrm{~cm}$ and $B X=6 \mathrm{~cm}$.
(i) Use similar triangles to calculate $D X$.

$$
D X=
$$

cm [2]
(ii) Calculate angle $X A B$.
(b)


NOT TO
SCALE
$P, Q, R, S$ and $T$ lie on the circle, centre $O$.
Angle $P S T=75^{\circ}$ and angle $Q T S=85^{\circ}$.
Find the values of $v, w, x$ and $y$.

$$
\begin{align*}
& v= \\
& w= \\
& x= \\
& y= \tag{6}
\end{align*}
$$

(c) Two containers are mathematically similar.

The surface area of the larger container is $226 \mathrm{~cm}^{2}$ and the surface area of the smaller container is $94 \mathrm{~cm}^{2}$.
The volume of the larger container is $680 \mathrm{~cm}^{3}$.

Find the volume of the smaller container.
$\qquad$

$$
\begin{array}{lll}
\mathrm{f}(x)=3 x+4 & \mathrm{~g}(x)=2 x-1 & \mathrm{~h}(x)=3^{x}
\end{array}
$$

(a) Find $\mathrm{g}\left(\frac{1}{2}\right)$.
(b) Find $\mathrm{fh}(-1)$.
$\qquad$
(c) Find $\mathrm{g}^{-1}(x)$.

$$
\mathrm{g}^{-1}(x)=
$$

(d) Find $\mathrm{ff}(x)$ in its simplest form.
$\qquad$
(e) Find $(\mathrm{f}(x))^{2}$ in the form $a x^{2}+b x+c$.
(f) Find $x$ when $\mathrm{h}^{-1}(x)=\mathrm{g}(2)$.
$x=$

10 （a）Find the next term and the $n$th term of this sequence．

$$
\frac{3}{5}, \quad \frac{4}{7}, \quad \frac{5}{9}, \quad \frac{6}{11}, \quad \frac{7}{13},
$$

Next term＝

$\qquad$

$$
n \text {th term }=
$$

（b）Find the $n$th term of each sequence．
（i）$-1, \quad-3, \quad-5, \quad-7, \quad-9, \quad \ldots$
［2］
（ii） $2, \quad 9, \quad 28, \quad 65, \quad 126, \quad \ldots$

