| (a) | The  | angles of a triangle are in the ratio 2:3:5.                             |               |  |  |  |  |  |  |
|-----|------|--------------------------------------------------------------------------|---------------|--|--|--|--|--|--|
|     | (i)  | Show that the triangle is right-angled.                                  |               |  |  |  |  |  |  |
|     |      |                                                                          |               |  |  |  |  |  |  |
|     |      |                                                                          | [1]           |  |  |  |  |  |  |
|     | (ii) | The length of the hypotenuse of the triangle is 12 cm.                   |               |  |  |  |  |  |  |
|     |      | Use trigonometry to calculate the length of the shortest side of t       | his triangle. |  |  |  |  |  |  |
|     |      |                                                                          |               |  |  |  |  |  |  |
|     |      |                                                                          |               |  |  |  |  |  |  |
|     |      |                                                                          |               |  |  |  |  |  |  |
|     |      |                                                                          |               |  |  |  |  |  |  |
|     |      |                                                                          | cm [3]        |  |  |  |  |  |  |
| (b) | The  | e sides of a different right-angled triangle are in the ratio 3 : 4 : 5. | . ,           |  |  |  |  |  |  |
|     | (i)  | The length of the shortest side is 7.8 cm.                               |               |  |  |  |  |  |  |
|     |      | Calculate the length of the longest side.                                |               |  |  |  |  |  |  |
|     |      |                                                                          |               |  |  |  |  |  |  |
|     |      |                                                                          |               |  |  |  |  |  |  |
|     |      |                                                                          | cm [2]        |  |  |  |  |  |  |
|     | (ii) | Calculate the smallest angle in this triangle.                           |               |  |  |  |  |  |  |
|     |      |                                                                          |               |  |  |  |  |  |  |
|     |      |                                                                          |               |  |  |  |  |  |  |
|     |      |                                                                          |               |  |  |  |  |  |  |
|     |      |                                                                          |               |  |  |  |  |  |  |
|     |      |                                                                          |               |  |  |  |  |  |  |
|     |      |                                                                          | [3]           |  |  |  |  |  |  |
|     |      |                                                                          |               |  |  |  |  |  |  |



1

**2** (a) Solve.

$$\frac{x}{7} = 49$$

 $x = \dots [1]$ 

**(b)** Simplify.

| (i) | $r^0$         |
|-----|---------------|
| (1) | $\mathcal{X}$ |

(ii) 
$$x^7 \times x^3$$

(iii) 
$$\frac{(3x^6)^2}{x^{-4}}$$

(c) (i) Factorise completely. 
$$2x^2 - 18$$

(ii) Simplify. 
$$\frac{2x^2 - 18}{x^2 + 7x - 2}$$



3 The graph shows information about the journey of a train between two stations.



(a) (i) Work out the acceleration of the train during the first 4 minutes of this journey. Give your answer in km/h².

| km/h <sup>2</sup> [ | 2] |
|---------------------|----|
|---------------------|----|

(ii) Calculate the distance, in kilometres, between the two stations.

.....km [4]



(b) (i) Show that 126 km/h is the same speed as 35 m/s.

[1]

(ii) The train has a total length of 220 m. At 0930, the train crossed a bridge of length 1400 m.

Calculate the time, in seconds, that the train took to completely cross the bridge.

.....s [3]

(c) On a different journey, the train took 73 minutes, correct to the nearest minute, to travel 215 km, correct to the nearest 5 km.

Calculate the upper bound of the average speed of the train for this journey. Give your answer in km/h.

.....km/h [4]



4 The table shows information about the time, t minutes, taken for each of 150 girls to complete an essay.

| Time (t minutes) | 60 < <i>t</i> ≤ 65 | $65 < t \le 70$ | $70 < t \leq 80$ | $80 < t \le 100$ | $100 < t \le 150$ |
|------------------|--------------------|-----------------|------------------|------------------|-------------------|
| Frequency        | 10                 | 26              | 34               | 58               | 22                |

|   | (~) | 117     | 4     | 41  | :+1     | 41 4 | contains | 41  |        | 4:  |
|---|-----|---------|-------|-----|---------|------|----------|-----|--------|-----|
| l | a   | ) WIIIE | uowii | uic | miervar | mai  | Comams   | uie | median | ume |

| < + <                                     | Γ1 <b>1</b> |
|-------------------------------------------|-------------|
| <br>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 1           |

## **(b)** Calculate an estimate of the mean time.

- (c) Rafay looks at the frequency table.
  - (i) He says that it is not possible to work out the range of the times.

Explain why he is correct.

| <br> | <br>• • • • • • • • • • • • • • • • • • • • |  |
|------|---------------------------------------------|--|
|      |                                             |  |

[1]

(ii) He draws a pie chart to show this information.

Calculate the sector angle for the interval  $65 < t \le 70$  minutes.



(d) A girl is chosen at random.

Work out the probability that she took more than 100 minutes to complete the essay.



|  | [1 | 1 |  |  |
|--|----|---|--|--|
|--|----|---|--|--|

(e) Two girls are chosen at random.

Work out the probability that, to complete the essay,

(i) they both took 65 minutes or less,

.....[2]

(ii) one took 65 minutes or less and the other took more than 100 minutes.

.....[3]

(f) The information in the frequency table is shown in a histogram. The height of the block for the  $60 < t \le 65$  interval is 5 cm.

Complete the table.

| Time (t minutes)     | 60 < <i>t</i> ≤ 65 | $65 < t \le 70$ | $70 < t \le 80$ | $80 < t \le 100$ | $100 < t \le 150$ |
|----------------------|--------------------|-----------------|-----------------|------------------|-------------------|
| Height of block (cm) | 5                  |                 |                 |                  |                   |



5



- (a) Draw the image of
  - (i) triangle A after a reflection in the line x = 0, [2]
  - (ii) triangle A after an enlargement, scale factor 2, centre (0, 4), [2]
  - (iii) triangle A after a translation by the vector  $\begin{pmatrix} -5\\ 3 \end{pmatrix}$ . [2]
- **(b)** Describe fully the **single** transformation that maps triangle A onto triangle B.



(c)  $\mathbf{T} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad \mathbf{U} = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$ 

Point P has co-ordinates (1, -4).

(i) Find T(P).

(.....) [2]

(ii) Find TU(P).

(....., .....) [2]

(iii) Describe the **single** transformation represented by the matrix **T**.

.....[3]

6 (a)







The diagrams show a cube, a cylinder and a hemisphere. The volume of each of these solids is 2000 cm<sup>3</sup>.

(i) Work out the height, h, of the cylinder.

(ii) Work out the radius, r, of the hemisphere. [The volume, V, of a sphere with radius r is  $V = \frac{4}{3}\pi r^3$ .]

$$r = \dots$$
 cm [3]

(iii) Work out the surface area of the cube.



**(b)** 



(i) Calculate the area of the triangle.

| <br>cm <sup>2</sup> [2] |
|-------------------------|
|                         |

(ii) Calculate the perimeter of the triangle and show that it is 23.5 cm, correct to 1 decimal place. Show all your working.

[5]

(c)



NOT TO SCALE

The perimeter of this sector of a circle is 28.2 cm.

Calculate the value of *c*.



$$c = \dots [3]$$

7 The table shows some values of  $y = 2x^2 + 5x - 3$  for  $-4 \le x \le 1.5$ .

| x | -4 | -3 | -2 | -1 | 0  | 1 | 1.5 |
|---|----|----|----|----|----|---|-----|
| У |    | 0  | -5 |    | -3 | 4 |     |

(a) Complete the table. [3]

**(b)** On the grid, draw the graph of  $y = 2x^2 + 5x - 3$  for  $-4 \le x \le 1.5$ .





[4]

(c) Use your graph to solve the equation  $2x^2 + 5x - 3 = 3$ .

(d)  $y = 2x^2 + 5x - 3$  can be written in the form  $y = 2(x+a)^2 + b$ .

Find the value of a and the value of b.



$$b = \dots [3]$$



- 8 Line A has equation y = 5x 4. Line B has equation 3x + 2y = 18.
  - (a) Find the gradient of

| (i) | line  | 4   |
|-----|-------|-----|
| (1) | IIIIC | 11. |

|                                         | Г | 1 | ٦ | 1 |
|-----------------------------------------|---|---|---|---|
| • • • • • • • • • • • • • • • • • • • • | L | 1 | · |   |

(ii) line *B*.

**(b)** Write down the co-ordinates of the point where line A crosses the x-axis.

(c) Find the equation of the line perpendicular to line A which passes through the point (10, 9). Give your answer in the form y = mx + c.

$$y =$$
.....[4]

(d) Work out the co-ordinates of the point of intersection of line A and line B.



(e) Work out the area enclosed by line A, line B and the y-axis.



.....[3]

9 Luigi and Alfredo run in a 10 km race.

Luigi's average speed was *x* km/h.

Alfredo's average speed was 0.5 km/h slower than Luigi's average speed.

(a) Luigi took  $\frac{10}{x}$  hours to run the race.

Write down an expression, in terms of x, for the time that Alfredo took to run the race.



- **(b)** Alfredo took 0.25 hours longer than Luigi to run the race.
  - (i) Show that  $2x^2 x 40 = 0$ .

[4]

(ii) Use the quadratic formula to solve  $2x^2 - x - 40 = 0$ . Show all your working and give your answers correct to 2 decimal places.

$$x =$$
 or  $x =$  [4]

(iii) Work out the time that Luigi took to run the 10 km race. Give your answer in hours and minutes, correct to the nearest minute.

..... h ..... min [3]

Question 10 is printed on the next page.

**10** (a) (i) Write 180 as a product of its prime factors.

|  |  |      |  |  |  |  |  |  |  |  |      |  |  |  |  |  |  |  |  |  |  |  |  |  | Г | - | ) | 1 |
|--|--|------|--|--|--|--|--|--|--|--|------|--|--|--|--|--|--|--|--|--|--|--|--|--|---|---|---|---|
|  |  | <br> |  |  |  |  |  |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  | ı | 4 | 2 | ı |

(ii) Find the lowest common multiple (LCM) of 180 and 54.

.....[2]

**(b)** An integer, X, written as a product of its prime factors is  $a^2 \times 7^{b+2}$ . An integer, Y, written as a product of its prime factors is  $a^3 \times 7^2$ .

The highest common factor (HCF) of *X* and *Y* is 1225. The lowest common multiple (LCM) of *X* and *Y* is 42 875.

Find the value of *X* and the value of *Y*.

 $X = \dots$   $Y = \dots [4]$ 

