1 The probability of picking a red sweet from a bag is 0.05 .
Find the probability of not picking a red sweet.

2 Work out the value of $\frac{m k^{3}}{\sqrt{3}}$ when $m=4$ and $k=7$.

3

$P Q R S$ is a quadrilateral. $R S T$ is a straight line.

Find angle $P S T$.

4 These are the masses, in kg , of 12 parcels.
$\begin{array}{lllll}0.3 & 0.4 & 1.2 & 0.8 & 1.1\end{array}$
2.1
1.7
1.8
1.2
$2.3 \quad 0.7$
1.1
(a) Complete the stem-and-leaf diagram for the 12 parcels.

0	3	4
1		
2		

Key: $0 \mid 3$ represents 0.3 kg
(b) Find the median.

5 The nth term of a sequence is $n^{2}-1$.
Find the first three terms of this sequence.

6 Simplify.
(a) $y^{3} \div y^{5}$
(b) $7 x^{0}$

7 The scatter diagram shows the number of visitors and the total amount spent, in thousands of dollars, at a zoo on each of eight days.

(a) On one of the eight days there are 410 visitors.

Find the total amount spent by visitors during this day.

$$
\$
$$

(b) Information for the ninth day is shown in the table.

Number of visitors	175
Total amount spent $(\$ 1000)$	9

Plot this information on the scatter diagram.
(c) Draw a line of best fit on the scatter diagram.
(d) On the tenth day the total amount spent is $\$ 22000$.

Estimate the number of visitors on this day.

8 Without using a calculator, work out $\frac{2}{9} \div \frac{5}{6}$.
You must show all your working and give your answer as a fraction in its simplest form.

9 Change $300 \mathrm{~m} / \mathrm{min}$ to km / h.
km/h

10

Find $\mathrm{n}(A \cap B)^{\prime}$.
$11 A B C, D E F$ and $G H K$ are triangles with all vertices on the circumference of a circle.

From the list, draw a ring around the line that is a diameter of the circle.
$A B$
AC
DE
DF
GH
GK
$12 f$ is a common factor of 14 and 28.
m is a common multiple of 10 and 25 .
p is a prime number.
Work out the largest possible value of $\frac{f}{m p}$.

13 Factorise completely.
(a) $18 p x-27 p$
(b) $m t-n-m+n t$

14 Find the nth term of this sequence.
$8,17,32,53,80, \ldots$

15 Solve.

$$
12 x-3 \geqslant 4 x+13
$$

16 Abdul draws this speed-time graph for a journey.
The graph has four sections A, B, C and D.

Complete these statements about the speed-time graph.

Section cannot be correct.

Section \qquad shows constant speed.

Section \qquad shows deceleration.

Section A shows acceleration of \qquad $\mathrm{m} / \mathrm{s}^{2}$.

The distance travelled in the first 30 seconds of the journey is \qquad m.

NOT TO
SCALE

In triangle $A B C, A C=A B$.
D is the point on $B C$ such that $A D$ is perpendicular to $B C$.
Complete the following statements to show that triangle $A C D$ and triangle $A B D$ are congruent.
$A D$ is perpendicular to $B C$ so that Angle \qquad $=$ Angle \qquad $=$ \qquad ${ }^{\circ}$ $A C=A B$ is given information.

Side \qquad is common to both triangles.

Triangle $A C D$ is congruent to triangle $A B D$ because of the congruency criterion

18 The bearing of B from A is x°. The bearing of A from B is y°. $x: y=2: 7$

Calculate the value of y.

$$
y=
$$

$\mathrm{g}(x)=\frac{1}{x}$
$h(x)=\frac{7 x-2}{5}$
$\mathrm{j}(x)=\frac{3-10 x}{14}$
(a) $\mathrm{f}(-5 k)=675$

Find the value of k.

$$
k=
$$

(b) Find $\operatorname{gh}(x)$.
(c) Find $\mathrm{h}^{-1}(x)+\mathrm{j}(x)$.

Give your answer in its simplest form.

NOT TO
SCALE

The diagram shows a square $A B C D$ with side length $k \mathrm{~cm}$. $M D E$ is a sector of a circle, centre D.
E lies on the diagonal, $B D$, of the square.
M is the midpoint of $A D$.
Find the percentage of the square that is shaded.

21 Neha has a piece of ribbon of length 23 cm , correct to the nearest cm .
From this ribbon she cuts off a piece with length 87 mm , correct to the nearest mm .
Work out the lower bound and the upper bound for the length of the remaining ribbon.
Give your answer in centimetres.
Lower bound $=\ldots \ldots \ldots . ~$
cm

22 Simplify.

$$
\frac{5 x-x^{2}}{25-x^{2}}
$$

23 Solve the equation $3 \sin x+3=1$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
$24 y$ is inversely proportional to the cube of $(x-1)$. $y=9.45$ when $x=3$.

Find y when $x=4$.

$$
\begin{equation*}
y= \tag{3}
\end{equation*}
$$

$$
m^{-\frac{1}{4}}=27 m^{-1}
$$

Find the value of m.

$$
m=
$$

