1 At noon，the temperature is $4^{\circ} \mathrm{C}$ ．
At midnight，the temperature is $-9^{\circ} \mathrm{C}$ ．
Work out the difference in temperature between noon and midnight．
\qquad ${ }^{\circ} \mathrm{C}$［1］

2 Thibault records the number of cars of each colour in a car park．

Colour	Black	White	Silver	Red
Number of cars	8	5	4	3

He draws a pie chart to show this information．
Calculate the sector angle for the red cars．
\qquad

3 Figs cost 43 cents each．
Lyra has $\$ 5$ to buy some figs．
Calculate the largest number of figs Lyra can buy and the amount of change，in cents，she receives．
figs and \qquad cents change

4 Find the value of $\sqrt{68} \times \sqrt{153}$ ．

5 Find the total surface area of a cuboid with length 8 cm , width 6 cm and height 3 cm .

6 Some cards have either a square, a circle or a triangle drawn on them.
Piet chooses one of the cards at random.
Complete the table to show the probability of choosing a card with each shape.

Shape	Square	Circle	Triangle
Probability	0.2	0.32	

7 The price of a coat is $\$ 126$.
In a sale, this price is reduced by 18%.
Find the sale price of the coat.
\$.

8 The nth term of a sequence is $n^{2}+12$.
Find the first three terms of this sequence.

NOT TO
SCALE

The bearing of B from A is 059°.
Work out the bearing of A from B.
\qquad

$$
\mathbf{p}=\binom{2}{8} \quad \mathbf{q}=\binom{-1}{4}
$$

(a) Find
(i) $\mathbf{p}-\mathbf{q}$,
(ii) $6 \mathbf{p}$.
(b) Find $|\mathbf{p}-\mathbf{q}|$.

11 Find the value of p when $6^{p} \times 6^{4}=6^{28}$.

$$
\begin{equation*}
p= \tag{1}
\end{equation*}
$$

12 Annette cycles a distance of 70 km from Midville to Newtown.
Leaving Midville, she cycles for 1 hour 30 minutes at a constant speed of $20 \mathrm{~km} / \mathrm{h}$ and then stops for 30 minutes.
She then continues the journey to Newtown at a constant speed of $16 \mathrm{~km} / \mathrm{h}$.

(a) On the grid, draw the distance-time graph for the journey.
(b) Calculate the average speed for the whole journey.

13 Without using a calculator, work out $4 \frac{1}{8}-2 \frac{5}{6}$.
You must show all your working and give your answer as a mixed number in its simplest form.

14 Carlos invests $\$ 4540$ at a rate of $r \%$ per year compound interest. At the end of 10 years he has earned $\$ 1328.54$ in interest.

Calculate the value of r.

$$
r=.
$$

15 Find the highest common factor (HCF) of $12 a^{3} b$ and $20 a^{2} b^{2}$.

16 The Venn diagram shows the number of students in a class of 40 who study physics (P), mathematics (M) and geography (G).

(a) Use set notation to describe the shaded region.
\qquad
(b) Find $\mathrm{n}\left((P \cap G) \cup M^{\prime}\right)$.
\qquad
(c) A student is chosen at random from those studying geography.

Find the probability that this student also studies physics or mathematics but not both.

17 (a) Sketch the graph of $y=\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

(b) Solve the equation $3 \sin x+1=0$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

$$
x=
$$

\qquad or $x=$

18 (a) y is directly proportional to the cube root of $(x+1)$. When $x=7, y=1$.

Find the value of y when $x=124$.

$$
y=
$$

(b) F is inversely proportional to the square of d.

Explain what happens to F when d is halved.
(a) Find $\mathrm{f}^{-1}(x)$.

$$
\mathrm{f}^{-1}(x)=
$$

\qquad
(b) Find the value of x when $h(x)=g\left(\frac{1}{3}\right)$.

$$
x=
$$

20 Factorise completely.
(a) $2 m+3 p-8 k m-12 k p$
(b) $5 x^{2}-20 y^{2}$

21 The nth term of a sequence is $a n^{2}+b n-4$.
The first term is -3 and the second term is 2 .
Find the value of a and the value of b.

$$
\begin{aligned}
& a= \\
& b=
\end{aligned}
$$

NOT TO
SCALE
$\overrightarrow{O A}=\mathbf{x}, \overrightarrow{O B}=\mathbf{y}$ and $\overrightarrow{O D}=\frac{3}{7} \mathbf{x}+\frac{4}{7} \mathbf{y}$.
Calculate the ratio $A D: D B$.

NOT TO
SCALE

The diagram shows a solid metal shape made from a cone and a hemisphere, both with radius 6.2 cm . The total surface area of the solid shape is $600 \mathrm{~cm}^{2}$.

Calculate the slant height, l, of the cone.
[The surface area, A, of a sphere with radius r is $A=4 \pi r^{2}$.]
[The curved surface area, A, of a cone with radius r and slant height l is $A=\pi r l$.]

$$
l=
$$

