1 The probability that Jane wins a game is $\frac{7}{10}$.
(a) Find the probability that Jane does not win the game.
(b) Jane plays this game 50 times.

Find the number of times she is expected to win the game.

2 Calculate $\sqrt[4]{0.0256}$.

3 Emma has 15 mathematics questions to complete.
The stem-and-leaf diagram shows the time, in minutes, it takes her to complete each question.

0	3	5	6	7	7	8	8
1	1	2	2	3	6	6	6
2	0						

Key: $2 \mid 0=20$ minutes
Complete the table.

Mode	$\ldots \ldots . \ldots . ~ m i n ~$
Median	$\ldots \ldots . ~ m i n ~$
Range	$\ldots \ldots \ldots . ~$

4 Write down an expression for the range of k consecutive integers.

5 (a) Henrik draws this scatter diagram.

Put a ring around the one correct statement about this scatter diagram.

$$
\begin{array}{cccc}
\text { It shows } & \text { It is not possible to tell if } & \text { It shows negative } & \text { It shows positive } \\
\text { no correlation. } & \text { there is correlation as there } & \text { correlation. } & \text { correlation. }
\end{array}
$$

(b) Each of the four scatter diagrams shows the same set of data.

A line has been drawn on each diagram.

Complete the statement.
The line in Diagram \qquad is the most appropriate line of best fit.

6 A rhombus has side length 6.5 cm .
The rhombus can be constructed by drawing two triangles.
Using a ruler and compasses only, construct the rhombus.
Leave in your construction arcs.
One diagonal of the rhombus has been drawn for you.

7 (a) Complete these statements.

The reciprocal of 0.2 is \qquad

A prime number between 90 and 100 is
(b)

$\frac{7}{5}$	0.6	$\sqrt{7}$	8	$\sqrt{9}$

From this list, write down an irrational number.
$8 \quad a=\frac{b^{2}}{5 c}$
Find b when $a=5.625$ and $c=2$.

$$
b=
$$

9 Without using a calculator, work out $\frac{2}{3} \div 1 \frac{3}{7}$.
You must show all your working and give your answer as a fraction in its simplest form.

10 (a) Write 0.00654 in standard form.
(b) The number 1.467×10^{102} is written as an ordinary number.

Write down the number of zeros that follow the digit 7.

11 Write $0.0 \dot{4}$ as a fraction in its simplest form.

12 (a) $\mathscr{E}=\{$ integers greater than 2$\}$
$A=$ \{prime numbers $\}$
$B=$ \{odd numbers $\}$
$C=\{$ square numbers $\}$
(i) Describe the type of numbers in the set $B^{\prime} \cap C$.
(ii) Complete the set labels on the Venn diagram.

(b)

Shade the region $\quad D^{\prime} \cup(E \cap F)^{\prime}$.

A, B and C are points on a circle, centre O.
$D A$ and $D C$ are tangents.
Angle $A D C=44^{\circ}$.
Work out the value of x.

$$
x=.
$$

The diagram shows a trapezium.
The trapezium has one line of symmetry.
Work out the area of the trapezium.
cm^{2} [4]

15 Complete the table showing information about the congruence of pairs of triangles. The first two rows have been completed for you.
All diagrams are not to scale.

| Pair of triangles | Congruent or
 not congruent | Congruence
 criterion |
| :---: | :---: | :---: | :---: |

$16 A$ is the point $(5,7)$ and B is the point $(9,-1)$.
(a) Find the length $A B$.
(b) Find the equation of the line $A B$.

17 Find the gradient of the line that is perpendicular to the line $3 y=4 x-5$.

18

$$
\mathrm{f}(x)=x^{2}-25 \quad \mathrm{~g}(x)=x+4
$$

Solve $\operatorname{fg}(x+1)=\operatorname{gf}(x)$.

$$
x=.
$$

19 (a)

The diagram shows a shape made from an equilateral triangle $A B C$ and a sector of a circle.
Points B and C lie on the circle, centre A.
The side length of the equilateral triangle is 12.4 cm .
Work out the perimeter of the shape.
\qquad
(b)

The diagram shows two sectors of a circle.
The major sector is shaded.
The area of the major sector is $74.5 \mathrm{~cm}^{2}$.
Calculate the radius of the circle.

20 Expand and simplify．

$$
(x-2)(2 x+5)(x+3)
$$

21 The force of attraction，F Newtons，between two magnets is inversely proportional to the square of the distance，$d \mathrm{~cm}$ ，between the magnets．

When $d=1.5, F=48$ ．
（a）Find an expression for F in terms of d ．

$$
F=
$$

（b）When the distance between the two magnets is doubled the new force is n times the original force．
Work out the value of n ．

22 Simplify.

$$
\frac{2 x^{2}-5 x-12}{3 x^{2}-12 x}
$$

23 Find all the solutions of $4 \sin x=3$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

24 Solve.

$$
\frac{1}{x+1}+\frac{9}{x+9}=1
$$

$$
x=. ~ o r ~ x=.
$$

