1 (a)

Campsite fees (per day)

Tent \$15.00 Caravan \$25.00

The sign shows the fees charged at a campsite. Today there are 54 tents and 18 caravans on the site.

Calculate the fees charged today.

\$	 [2]
4	L

(b) In September the total income at the campsite was \$37054. This was a decrease of 4.5% on the total income in August.

Calculate the total income in August.

\$[2]

(c) The visitors to the campsite today are in the ratio

men: women = 5:4 and women: children = 3:7.

(i) Calculate the ratio men: women: children in its simplest form.

.....[2]

(ii) Today there are 224 children at the campsite.

Calculate the total number of men and women.

.....[3]

(d) The space allowed for each tent is a rectangle measuring 8 m by 6 m, each correct to the nearest metre.

Calculate the upper bound for the area of the space allowed for each tent.

..... m² [2]

(e) The value of the campsite has increased exponentially by 1.5% every year since it opened 30 years ago.

Calculate the value of the campsite now as a percentage of its value 30 years ago.

..... % [2]

2

- (a) (i) Draw the image of triangle A after a reflection in the line y = -x. [2]
 - (ii) Draw the image of triangle A after a translation by the vector $\begin{pmatrix} -2 \\ -9 \end{pmatrix}$. [2]
- (b) Describe fully the single transformation that maps
 - (i) triangle A onto triangle B,

.....[3

(ii) triangle A onto triangle C.

- 3 (a) Here is some information about the masses of potatoes in a sack:
 - The largest potato has a mass of 174 g.
 - The range is 69 g.
 - The median is 148 g.
 - The lower quartile is 121 g.
 - The interquartile range is 38 g.

On the grid below, draw a box-and-whisker plot to show this information.

(b) The table shows the marks scored by some students in a test.

Mark	5	6	7	8	9	10
Frequency	8	2	12	2	0	1

Calculate the mean mark.

.....[3]

4 (a) Solve the inequality.

$$3m + 12 \leq 8m - 5$$

.....[2]

(b) Solve the equation.
$$\frac{2x+5}{3-x} = \frac{14}{15}$$

$$x =$$
 [3]

(c) Solve the simultaneous equations. You must show all your working.

$$y = 4 - x$$
$$x^2 + 2y^2 = 67$$

5 All the lengths in this question are in centimetres.

The diagram shows a shape ABCDEF made from two rectangles. The total area of the shape is $342 \, \mathrm{cm}^2$.

(a) Show that $x^2 + x - 72 = 0$.

[5]

(b) Solve by factorisation.

$$x^2 + x - 72 = 0$$

(c) Work out the perimeter of the shape ABCDEF.

......cm [2]

(d) Calculate angle *DBC*.

Angle
$$DBC = \dots [2]$$

6 (a)

The diagram shows triangle ABC with point G inside. CB = 11 cm, CG = 5.3 cm and BG = 6.9 cm. Angle $CAB = 42^{\circ}$ and angle $ACG = 54^{\circ}$.

(i) Calculate the value of x.

 $x = \dots$ [4]

(ii) Calculate AC.

 $AC = \dots$ cm [4]

(b)

Water flows at a speed of $20\,\mathrm{cm/s}$ along a rectangular channel into a lake. The width of the channel is $15\,\mathrm{cm}$.

The depth of the water is 2.5 cm.

Calculate the amount of water that flows from the channel into the lake in 1 hour. Give your answer in litres.

	litres	[4
• • • • • • • • • • • • • • • • • • • •	111105	L'.

- On any Saturday, the probability that Arun plays football is $\frac{3}{4}$.

 On any Saturday, the probability that Bob plays football is $\frac{2}{5}$.
 - (a) (i) Complete the tree diagram.

(ii) Calculate the probability that, one Saturday, Arun and Bob both play football.

.....[2]

[2]

(iii) Calculate the probability that, one Saturday, either Arun plays football or Bob plays football, but not both.

.....[3]

(b) Calculate the probability that Bob plays football for 2 of the next 3 Saturdays.

.....[3]

(c) When Arun plays football, the probability that he scores the winning goal is $\frac{1}{7}$. Calculate the probability that Arun scores the winning goal one Saturday.

.....[2]

8 (a) The interior angle of a regular polygon with n sides is 150° .

Calculate the value of *n*.

		ГЭ
n	=	 12

(b) (i) K, L and M are points on the circle.

KS is a tangent to the circle at K.

KM is a diameter and triangle KLM is isosceles.

Find the value of z.

(ii) AT is a tangent to the circle at A.

Find the value of x.

$$x = \dots$$
 [2]

(iii)

NOT TO SCALE

F, G, H and J are points on the circle. EFG is a straight line parallel to JH.

Find the value of *y*.

	[7]
v =	1/

(c)

NOT TO SCALE

A, B, C and D are points on the circle, centre O. M is the midpoint of AB and N is the midpoint of CD. OM = ON

Explain, giving reasons, why triangle <i>OAB</i> is congruent to triangle <i>OCD</i>	Explain, giving reasons	, why triangle <i>C</i>	DAB is congruent	to triangle <i>OCD</i> .
--	-------------------------	-------------------------	------------------	--------------------------

 	 	 •

- 9 (a) The equation of line L is 3x 8y + 20 = 0.
 - (i) Find the gradient of line L.

.....[2]

(ii) Find the coordinates of the point where line L cuts the y-axis.

(.....) [1]

- **(b)** The coordinates of P are (-3, 8) and the coordinates of Q are (9, -2).
 - (i) Calculate the length PQ.

.....[3]

(ii) Find the equation of the line parallel to PQ that passes through the point (6, -1).

.....[3]

(iii) Find the equation of the perpendicular bisector of PQ.

.....[4]

10 (a) The diagrams show the graphs of two functions.

Write down each function.

(i)

$$f(x) = \dots [2]$$

(ii)

$$f(x) = \dots [2]$$

(b)

The diagram shows the graph of another function.

By drawing a suitable tangent, find an estimate for the gradient of the function at the point P.

11

$$f(x) = 7x - 4$$

$$g(x) = \frac{2x}{x-3}, x \neq 3$$

$$h(x) = x^2$$

(a) Find g(6).

.....[1]

(b) Find fg(4).

.....[2]

(c) Find fh(x).

.....[1]

(d) Find $\frac{f(x)}{2} + g(x)$.

Give your answer as a single fraction, in terms of x, in its simplest form.

.....[3]

(e) Find the value of x when f(x+2) = -11.

 $x = \dots$ [2]

(f) Find the values of p that satisfy h(p) = p.

.....[2]

- **12** (a) A curve has equation $y = 4x^3 3x + 3$.
 - (i) Find the coordinates of the two stationary points.

(......) and (......) [5]

(ii) Determine whether each of the stationary points is a maximum or a minimum. Give reasons for your answers.

[3]

(b) The graph of $y = x^2 - x + 1$ is shown on the grid.

By drawing a suitable line on the grid, solve the equation $x^2 - 2x - 2 = 0$.

 $x = \dots$ or $x = \dots$ [3]

