1 (a) (i) Divide $\$ 24$ in the ratio $7: 5$.
\$ \qquad , \$
(ii) Write $\$ 24.60$ as a fraction of $\$ 2870$.

Give your answer in its lowest terms.
(iii) Write $\$ 1.92$ as a percentage of $\$ 1.60$.
\qquad
(b) In a sale the original prices are reduced by 15%.
(i) Calculate the sale price of a book that has an original price of $\$ 12$.
\$
(ii) Calculate the original price of a jacket that has a sale price of $\$ 38.25$.
(c) (i) Dean invests $\$ 500$ for 10 years at a rate of 1.7% per year simple interest.

Calculate the total interest earned during the 10 years.
(ii) Ollie invests $\$ 200$ at a rate of 0.0035% per day compound interest.

Calculate the value of Ollie's investment at the end of 1 year.
[1 year $=365$ days.]
\$
[2]
(iii) Edna invests $\$ 500$ at a rate of $r \%$ per year compound interest.

At the end of 6 years, the value of Edna's investment is $\$ 559.78$.
Find the value of r.

$$
r=
$$

2 (a) $\mathbf{p}=\binom{4}{5} \quad \mathbf{q}=\binom{-2}{7}$
(i) Find $2 \mathbf{p}+\mathbf{q}$.
(ii) Find $|\mathbf{p}|$.
\qquad
(b) A is the point $(4,1)$ and $\overrightarrow{A B}=\binom{3}{1}$.

Find the coordinates of B.
\qquad
(c) The line $y=3 x-2$ crosses the y-axis at G.

Write down the coordinates of G.
(d)

NOT TO
SCALE

In the diagram, O is the origin, $O T=2 T D$ and M is the midpoint of $T C$.
$\overrightarrow{O C}=\mathbf{c}$ and $\overrightarrow{O D}=\mathbf{d}$.
Find the position vector of M.
Give your answer in terms of \mathbf{c} and \mathbf{d} in its simplest form.

3 The speed, $v \mathrm{~km} / \mathrm{h}$, of each of 200 cars passing a building is measured.
The table shows the results.

Speed $(v \mathrm{~km} / \mathrm{h})$	$0<v \leqslant 20$	$20<v \leqslant 40$	$40<v \leqslant 45$	$45<v \leqslant 50$	$50<v \leqslant 60$	$60<v \leqslant 80$
Frequency	16	34	62	58	26	4

(a) Calculate an estimate of the mean.
(b) (i) Use the frequency table to complete the cumulative frequency table.

Speed $(v \mathrm{~km} / \mathrm{h})$	$v \leqslant 20$	$v \leqslant 40$	$v \leqslant 45$	$v \leqslant 50$	$v \leqslant 60$	$v \leqslant 80$
Cumulative frequency	16	50			196	200

(ii) On the grid, draw a cumulative frequency diagram.

(iii) Use your diagram to find an estimate of
(a) the upper quartile,
\qquad
(b) the number of cars with a speed greater than $35 \mathrm{~km} / \mathrm{h}$.
\qquad
(c) Two of the 200 cars are chosen at random.

Find the probability that they both have a speed greater than $50 \mathrm{~km} / \mathrm{h}$.
(d) A new frequency table is made by combining intervals.

Speed $(v \mathrm{~km} / \mathrm{h})$	$0<v \leqslant 40$	$40<v \leqslant 50$	$50<v \leqslant 80$
Frequency	50	120	30

On the grid, draw a histogram to show the information in this table.

The diagram shows two triangles.
(a) Calculate $Q R$.
$Q R=$
m [3]
(b) Calculate $R S$.
(c) Calculate the total area of the two triangles.

The diagram shows a field $A B C D$.
The bearing of B from A is 140°.
C is due east of B and D is due north of C.
$A B=400 \mathrm{~m}, B C=350 \mathrm{~m}$ and $C D=450 \mathrm{~m}$.
(a) Find the bearing of D from B.
(b) Calculate the distance from D to A.
(c) Jono runs around the field from A to B, B to C, C to D and D to A. He runs at a speed of $3 \mathrm{~m} / \mathrm{s}$.

Calculate the total time Jono takes to run around the field.
Give your answer in minutes and seconds, correct to the nearest second.
\min

$$
\mathrm{f}(x)=3 x+2 \quad \mathrm{~g}(x)=x^{2}+1 \quad \mathrm{~h}(x)=4^{x}
$$

(a) Find $\mathrm{h}(4)$.
(b) Find $\mathrm{fg}(1)$.
(c) Find $\operatorname{gf}(x)$ in the form $a x^{2}+b x+c$.
\qquad
(d) Find x when $\mathrm{f}(x)=\mathrm{g}(7)$.

$$
\begin{equation*}
x= \tag{2}
\end{equation*}
$$

(e) Find $\mathrm{f}^{-1}(x)$.

$$
\mathrm{f}^{-1}(x)=
$$

(f) Find $\frac{\mathrm{g}(x)}{\mathrm{f}(x)}+x$.

Give your answer as a single fraction, in terms of x, in its simplest form.
(g) Find x when $\mathrm{h}^{-1}(x)=2$.

$$
\begin{equation*}
x= \tag{1}
\end{equation*}
$$

7 Tanya plants some seeds.
The probability that a seed will produce flowers is 0.8 .
When a seed produces flowers, the probability that the flowers are red is 0.6 and the probability that the flowers are yellow is 0.3 .
(a) Tanya has a seed that produces flowers.

Find the probability that the flowers are not red and not yellow.
(b) (i) Complete the tree diagram.

(ii) Find the probability that a seed chosen at random produces red flowers.
(iii) Tanya chooses a seed at random.

Find the probability that this seed does not produce red flowers and does not produce yellow flowers.
(c) Two of the seeds are chosen at random.

Find the probability that one produces flowers and one does not produce flowers.

8 (a)

NOT TO
SCALE

Triangle $A B C$ is mathematically similar to triangle $P Q R$.
The area of triangle $A B C$ is $16 \mathrm{~cm}^{2}$.
(i) Calculate the area of triangle $P Q R$.
(ii) The triangles are the cross-sections of prisms which are also mathematically similar. The volume of the smaller prism is $320 \mathrm{~cm}^{3}$.

Calculate the length of the larger prism.
(b) A cylinder with radius 6 cm and height $h \mathrm{~cm}$ has the same volume as a sphere with radius 4.5 cm .

Find the value of h.
[The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]

$$
\begin{equation*}
h= \tag{3}
\end{equation*}
$$

(c) A solid metal cube of side 20 cm is melted down and made into 40 solid spheres, each of radius $r \mathrm{~cm}$.

Find the value of r.
[The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]

$$
r=
$$

(d) A solid cylinder has radius $x \mathrm{~cm}$ and height $\frac{7 x}{2} \mathrm{~cm}$.

The surface area of a sphere with radius $R \mathrm{~cm}$ is equal to the total surface area of the cylinder.
Find an expression for R in terms of x.
[The surface area, A, of a sphere with radius r is $A=4 \pi r^{2}$.]

$$
R=
$$

9 (a) (i) Write $x^{2}+8 x-9$ in the form $(x+k)^{2}+h$.
(ii) Use your answer to part (a)(i) to solve the equation $x^{2}+8 x-9=0$.

$$
x=.
$$

\qquad or $x=$ \qquad
(b) The solutions of the equation $x^{2}+b x+c=0$ are $\frac{-7+\sqrt{61}}{2}$ and $\frac{-7-\sqrt{61}}{2}$.

Find the value of b and the value of c.

$$
b=
$$

$$
\begin{equation*}
c= \tag{3}
\end{equation*}
$$

(c) (i)

On the diagram,
(a) sketch the graph of $y=(x-1)^{2}$,
(b) sketch the graph of $y=\frac{1}{2} x+1$.
(ii) The graphs of $y=(x-1)^{2}$ and $y=\frac{1}{2} x+1$ intersect at A and B.

Find the length of $A B$.

$$
A B=
$$

10 (a) $y=x^{4}-4 x^{3}$
(i) Find the value of y when $x=-1$.

$$
\begin{equation*}
y= \tag{2}
\end{equation*}
$$

(ii) Find the two stationary points on the graph of $y=x^{4}-4 x^{3}$.
\qquad
\qquad
(b) $y=x^{p}+2 x^{q}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=11 x^{10}+10 x^{4}$, where $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is the derived function.
Find the value of p and the value of q.

$$
\begin{align*}
& p= \\
& q= \tag{2}
\end{align*}
$$

