0580_s20_qp_42

1	(a)	(i)	Divide	\$24	in	the	ratio	7	:	5.	
---	------------	-----	--------	------	----	-----	-------	---	---	----	--

(ii)	Write \$24.60 as a fraction of \$2870. Give your answer in its lowest terms.	\$, \$ [2]
(iii)	Write \$1.92 as a percentage of \$1.60.	[2]
(b) In a	a sale the original prices are reduced by 15%.	% [1]

Page 1 of 19

(i) Calculate the sale price of a book that has an original price of \$12.

\$[2]

(ii) Calculate the original price of a jacket that has a sale price of \$38.25.

Page 2 of 19

(c) (i) Dean invests \$500 for 10 years at a rate of 1.7% per year simple interest.

Calculate the total interest earned during the 10 years.

(ii) Ollie invests \$200 at a rate of 0.0035% per day compound interest.
Calculate the value of Ollie's investment at the end of 1 year. [1 year = 365 days.]

(iii) Edna invests \$500 at a rate of r% per year compound interest. At the end of 6 years, the value of Edna's investment is \$559.78.

Find the value of *r*.

2 (a)
$$\mathbf{p} = \begin{pmatrix} 4\\5 \end{pmatrix}$$
 $\mathbf{q} = \begin{pmatrix} -2\\7 \end{pmatrix}$

(i) Find 2p + q.

[2]

(ii) Find $|\mathbf{p}|$.

(b) *A* is the point (4, 1) and $\overrightarrow{AB} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$. Find the coordinates of *B*.

(.....) [1]

(c) The line y = 3x - 2 crosses the y-axis at G.

Write down the coordinates of G.

(.....) [1]

In the diagram, *O* is the origin, OT = 2TD and *M* is the midpoint of *TC*. $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{OD} = \mathbf{d}$.

Find the position vector of *M*.

Give your answer in terms of \mathbf{c} and \mathbf{d} in its simplest form.

.....[3]

Page 5 of 19

3 The speed, v km/h, of each of 200 cars passing a building is measured. The table shows the results.

Speed (vkm/h)	$0 < v \leq 20$	$20 < v \le 40$	$40 < v \le 45$	$45 < v \le 50$	$50 < v \le 60$	$60 < v \le 80$
Frequency	16	34	62	58	26	4

(a) Calculate an estimate of the mean.

..... km/h [4]

(b) (i) Use the frequency table to complete the cumulative frequency table.

Speed (v km/h)	<i>v</i> ≤ 20	<i>v</i> ≤ 40	<i>v</i> ≤ 45	$v \leq 50$	$v \le 60$	<i>v</i> ≤ 80	
Cumulative frequency	16	50			196	200	
				,			[1]

(ii) On the grid, draw a cumulative frequency diagram.

[3]

Page 6 of 19

((iii)	Use	your diagram to find an estimate of	
		(a)	the upper quartile,	
			km/h [1]	l
		(b)	the number of cars with a speed greater than 35 km/h.	
			[2]	
(c)	Two	oft	he 200 cars are chosen at random.	
	Finc	d the	probability that they both have a speed greater than 50 km/h.	

(d) A new frequency table is made by combining intervals.

Speed (vkm/h)	$0 < v \leq 40$	$40 < v \le 50$	$50 < v \le 80$
Frequency	50	120	30

On the grid, draw a histogram to show the information in this table.

[3]

The diagram shows two triangles.

(a) Calculate QR.

(b) Calculate *RS*.

QR = m [3]

 $RS = \dots m [4]$

Page 8 of 19

(c) Calculate the total area of the two triangles.

..... m² [3]

Page 9 of 19

The diagram shows a field *ABCD*. The bearing of *B* from *A* is 140°. *C* is due east of *B* and *D* is due north of *C*. AB = 400 m, BC = 350 m and CD = 450 m.

(a) Find the bearing of *D* from *B*.

(b) Calculate the distance from *D* to *A*.

..... m [6]

(c) Jono runs around the field from A to B, B to C, C to D and D to A. He runs at a speed of 3 m/s.

Calculate the total time Jono takes to run around the field. Give your answer in minutes and seconds, correct to the nearest second.

..... min s [4]

			Page	11 of 19	0580_s20_qp_42
6		f(x) = 3x + 2	$g(x) = x^2 + 1$	$\mathbf{h}(x) = 4^x$	
	(a)	Find h(4).			
					F11
	(h)	Find fg(1)			[1]
	(0)	1 mu 1 <u>g</u> (1).			
					[2]
	(c)	Find $gf(x)$ in the	form $ax^2 + bx + c$.		
					[2]
	(d)	Find x when $f(x)$	(z) = g(7).		[3]
		X	,,		
					<i>x</i> =
	(e)	Find $f^{-1}(x)$.			

00 () $f^{-1}(x) =$ [2]

Page 12 of 19

(f) Find
$$\frac{g(x)}{f(x)} + x$$
.

Give your answer as a single fraction, in terms of x, in its simplest form.

......[3]

(g) Find x when $h^{-1}(x) = 2$.

x = [1]

Page 13 of 19

7 Tanya plants some seeds.

The probability that a seed will produce flowers is 0.8. When a seed produces flowers, the probability that the flowers are red is 0.6 and the probability that the flowers are yellow is 0.3.

(a) Tanya has a seed that produces flowers.

Find the probability that the flowers are not red and not yellow.

(b) (i) Complete the tree diagram.

[2]

(ii) Find the probability that a seed chosen at random produces red flowers.

Page 14 of 19

(iii) Tanya chooses a seed at random.

Find the probability that this seed does not produce red flowers and does not produce yellow flowers.

.....[3]

(c) Two of the seeds are chosen at random.

Find the probability that one produces flowers and one does not produce flowers.

.....[3]

Page 15 of 19

Triangle *ABC* is mathematically similar to triangle *PQR*. The area of triangle *ABC* is 16 cm^2 .

(i) Calculate the area of triangle *PQR*.

(ii) The triangles are the cross-sections of prisms which are also mathematically similar. The volume of the smaller prism is $320 \,\mathrm{cm}^3$.

Calculate the length of the larger prism.

8

Page 16 of 19

(b) A cylinder with radius 6 cm and height h cm has the same volume as a sphere with radius 4.5 cm.

Find the value of *h*.

[The volume, V, of a sphere with radius r is $V = \frac{4}{3}\pi r^3$.]

 $h = \dots [3]$

(c) A solid metal cube of side 20 cm is melted down and made into 40 solid spheres, each of radius r cm.

Find the value of *r*.

[The volume, V, of a sphere with radius r is $V = \frac{4}{3}\pi r^3$.]

 (d) A solid cylinder has radius x cm and height ^{7x}/₂ cm. The surface area of a sphere with radius R cm is equal to the total surface area of the cylinder. Find an expression for R in terms of x.

[The surface area, A, of a sphere with radius r is $A = 4\pi r^2$.]

<i>R</i> =	[3]
------------	-----

Page 17 of 19

9 (a) (i) Write $x^2 + 8x - 9$ in the form $(x+k)^2 + h$.

......[2]

(ii) Use your answer to part (a)(i) to solve the equation $x^2 + 8x - 9 = 0$.

 $x = \dots$ or $x = \dots$ [2]

(b) The solutions of the equation $x^2 + bx + c = 0$ are $\frac{-7 + \sqrt{61}}{2}$ and $\frac{-7 - \sqrt{61}}{2}$. Find the value of *b* and the value of *c*.

 $b = \dots$ [3]

(c) (i)

On the diagram,

- (a) sketch the graph of $y = (x-1)^2$, [2]
- (b) sketch the graph of $y = \frac{1}{2}x + 1$. [2]

(ii) The graphs of
$$y = (x-1)^2$$
 and $y = \frac{1}{2}x+1$ intersect at *A* and *B*.
Find the length of *AB*.

Question 10 is printed on the next page.

10 (a) $y = x^4 - 4x^3$

(i) Find the value of y when x = -1.

(ii) Find the two stationary points on the graph of $y = x^4 - 4x^3$.

(.....) (.....) [6]

(b) $y = x^{p} + 2x^{q}$ $\frac{dy}{dx} = 11x^{10} + 10x^{4}$, where $\frac{dy}{dx}$ is the derived function. Find the value of p and the value of q.

 $p = \dots$ $q = \dots$ [2]

