1 A company employed 300 workers when it started and now employs 852 workers．
（a）Calculate the percentage increase in the number of workers．
\qquad
（b）Of the 852 workers，the ratio part－time workers ：full－time workers $=5: 7$ ．
Calculate the number of full－time workers．
（c）The company makes 40600 headphones in one year．
Write this number
（i）in words，
（ii）in standard form．
\qquad
（d）In one month，the company sells 3000 headphones．
Of these， 48% are exported，$\frac{3}{8}$ are sold to shops and the rest are sold online．
Calculate the number of headphones that are sold online．
(e) One year, sales increased by 15%.

The following year sales increased by 18%.
Calculate the overall percentage increase in sales.

2 The table shows some values for $y=x^{2}-\frac{1}{3 x}, x \neq 0$. The y-values are rounded to 1 decimal place.

x	-2	-1.5	-1	-0.75	-0.5	-0.25	-0.1
y	4.2	2.5	1.3			1.4	3.3

(a) Complete the table.
(b) On the grid, draw the graph of $y=x^{2}-\frac{1}{3 x}$ for $-2 \leqslant x \leqslant-0.1$.

The graph of $y=x^{2}-\frac{1}{3 x}$ for $x>0$ has been drawn for you.

[4]
(c) By drawing a suitable line on the grid, solve the equation $x^{2}-\frac{1}{3 x}+1=0$.

$$
x=
$$

$$
\mathrm{f}(x)=1+4 x
$$

$$
\mathrm{g}(x)=x^{2}
$$

(a) Find
(i) $\mathrm{gf}(3)$,
(ii) $\mathrm{fg}(x)$,
(iii) $\mathrm{f}^{-1} \mathrm{f}(x)$.
(b) Find the value of x when $\mathrm{f}(x)=15$.
$x=$
[2]

4 (a)

In triangle $A B C, A B=45 \mathrm{~cm}, A C=29.5 \mathrm{~cm}, B C=35.3 \mathrm{~cm}$ and angle $C A B=51.6^{\circ}$.
(i) Calculate angle $A B C$.

Angle $A B C=$
(ii) Calculate the area of triangle $A B C$.
(b)

The diagram shows a quadrilateral $P Q R S$ formed from two triangles, $P Q S$ and $Q R S$.
Triangle $P Q S$ is isosceles, with $P Q=P S=32 \mathrm{~cm}$ and angle $S P Q=56^{\circ}$.
$Q R=47 \mathrm{~cm}$ and angle $S Q R=60^{\circ}$.
(i) Calculate $S R$.

$$
S R=
$$

(ii) Calculate the shortest distance from P to $S Q$.

5 The table shows information about the mass, m grams, of each of 120 letters.

Mass $(m$ grams $)$	$0<m \leqslant 50$	$50<m \leqslant 100$	$100<m \leqslant 200$	$200<m \leqslant 500$
Frequency	43	31	25	21

(a) Calculate an estimate of the mean mass.
(b) Iraj draws a histogram to show this information.

He makes the height of the first bar 17.2 cm .
Calculate the height of each of the remaining bars.

> height of bar for $50<m \leqslant 100$... cm height of bar for $100<m \leqslant 200$... cm height of bar for $200<m \leqslant 500$.. cm
(c) Complete the cumulative frequency table.

Mass (m grams)	$m \leqslant 50$	$m \leqslant 100$	$m \leqslant 200$	$m \leqslant 500$
Cumulative frequency				

(d) Draw a cumulative frequency diagram.

(e) Use the cumulative frequency diagram to find an estimate for
(i) the median,
\qquad
(ii) the upper quartile,
(iii) the 40th percentile,
(iv) the number of letters with a mass m where $250<m \leqslant 400$.

6 (a) The interior angle of a regular polygon is 156°.
Calculate the number of sides of this polygon.
(b)

NOT TO
SCALE
A, B and C lie on a circle, centre O.
Angle $O B A=52^{\circ}$.
Calculate angle $A C B$.
(c)

NOT TO
SCALE
P, Q, R, S and T lie on a circle.
$W S R$ is a straight line and angle $W S P=112^{\circ}$.
Calculate angle PTR.

Angle $P T R=$
(d)

G, K and M lie on a circle, centre O.
$F G H$ is a tangent to the circle at G and $M G$ is parallel to $O H$.
Show that triangle $G K M$ is mathematically similar to triangle $O H G$.
Give a geometrical reason for each statement you make.
\qquad
\qquad
\qquad
\qquad

7 Two rectangular picture frames are mathematically similar.
(a) The areas of the frames are $350 \mathrm{~cm}^{2}$ and $1134 \mathrm{~cm}^{2}$.

The width of the smaller frame is 17.5 cm .
Calculate the width of the larger frame.
(b) A picture in the smaller frame has length 15 cm and width 10.5 cm , both correct to the nearest 5 mm .

Calculate the upper bound for the area of this picture.
\qquad
(c) In a sale, the price of a large frame is reduced by 18%.

Parthi pays $\$ 166.05$ for 5 large frames in the sale.
Calculate the original price of one large frame.

> \$
(d) Parthi advertises a large frame for a price of $\$ 57$ or 48.20 euros.

The exchange rate is $\$ 1=0.88$ euros.
Calculate the difference between these prices, in dollars and cents, correct to the nearest cent.

$$
\$
$$

8 Darpan runs a distance of 12 km and then cycles a distance of 26 km .
His running speed is $x \mathrm{~km} / \mathrm{h}$ and his cycling speed is $10 \mathrm{~km} / \mathrm{h}$ faster than his running speed.
He takes a total time of 2 hours 48 minutes.
(a) An expression for the time, in hours, Darpan takes to run the 12 km is $\frac{12}{x}$.

Write an equation, in terms of x, for the total time he takes in hours.
(b) Show that this equation simplifies to $7 x^{2}-25 x-300=0$.
(c) Use the quadratic formula to solve $7 x^{2}-25 x-300=0$. You must show all your working.

$$
x=
$$

\qquad or $x=$ \qquad
(d) Calculate the number of minutes Darpan takes to run the 12 km .
\qquad $\min [2]$

9 (a)

The volume of a paper cone of radius 2.4 cm is $95.4 \mathrm{~cm}^{3}$.
The paper is cut along the slant height from O to $A B$.
The cone is opened to form a sector $O A B$ of a circle with centre O.
Calculate the sector angle x°.
[The volume, V, of a cone with radius r and height h is $V=\frac{1}{3} \pi r^{2} h$.]
(b) An empty fuel tank is filled using a cylindrical pipe with diameter 8 cm .

Fuel flows along this pipe at a rate of 2 metres per second.
It takes 24 minutes to fill the tank.
Calculate the capacity of the tank.
Give your answer in litres.

10 (a) Expand and simplify.

$$
(x+1)(x-2)(x+3)
$$

(b) Make g the subject of the formula.

$$
M=\frac{2 f g}{g-c}
$$

$$
g=
$$

(c) Simplify.

$$
\frac{4 x^{2}-16 x}{x^{2}-16}
$$

11 (a) The probability that Shalini is late for school on any day is $\frac{1}{6}$.
(i) Complete the tree diagram for Monday and Tuesday.

(ii) Calculate the probability that Shalini is late on Monday but is not late on Tuesday.
(b) The Venn diagram shows the number of students in a group of 50 students who wear glasses (G), who wear trainers (T) and who have a mobile phone (M).

(i) Use set notation to describe the region that contains only one student.
(ii) Find $\mathrm{n}\left(T^{\prime} \cap(G \cup M)\right)$.
\qquad
(iii) One student is picked at random from the 50 students.

Find the probability that this student wears trainers but does not wear glasses.
(iv) Two students are picked at random from those wearing trainers.

Find the probability that both students have mobile phones.

12 (a) Solve the equation $\tan x=11.43$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

$$
x=\ldots \text { or } x=
$$

(b) Sketch the curve $y=x^{3}-4 x$.

(c) A curve has equation $y=x^{3}+a x+b$.

The stationary points of the curve have coordinates $(2, k)$ and $(-2,10-k)$.
Work out the value of a, the value of b and the value of k.
$a=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots, \quad b=$
$k=$
[6]

