

Measure the marked angle.

2 Work out $\sqrt{5} \times 6^{2}$.
Give your answer correct to 2 decimal places.

3 A journey starts at 2115 one day and ends at 0433 the next day.
Calculate the time taken, in hours and minutes.
\qquad h \qquad

4

NOT TO
SCALE

Calculate the total surface area of this cuboid.

5 （a）Write down the gradient of the line $y=5 x+7$ ．
（b）Find the coordinates of the point where the line $y=5 x+7$ crosses the y－axis．

6

NOT TO SCALE

Using a ruler and compasses only，construct this triangle．
Leave in your construction arcs．
The side of length 12 cm has been drawn for you．

0 drite down the inequality，in terms of n ，shown by the number line．

(a) On the grid, draw the image of
(i) triangle A after a reflection in the y-axis,
(ii) triangle A after a translation by the vector $\binom{-3}{-4}$.
(b) Describe fully the single transformation that maps triangle A onto triangle B.
\qquad
\qquad

9 Factorise completely.

$$
12 a^{3}-21 a
$$

10 (a) The nth term of a sequence is $n^{2}+7$.
Find the first three terms of this sequence.
(b) These are the first four terms of a different sequence.

$$
\begin{array}{llll}
15 & 7 & -1 & -9
\end{array}
$$

Find the nth term of this sequence.

11 As the temperature increases, people eat more ice cream.
What type of correlation does this statement describe?
\qquad

12 (a) Sanjay invests $\$ 700$ in an account paying simple interest at a rate of 2.5% per year.
Calculate the value of his investment at the end of 6 years.
\$
(b) Meera invests $\$ 700$ in an account paying compound interest at a rate of $r \%$ per year. At the end of 17 years the value of her investment is $\$ 1030.35$.

Find the value of r.

$$
r=.
$$

13 (a) Simplify $h^{2} \times h^{5}$.
(b) Simplify $\left(\frac{7}{x}\right)^{-3}$.
(c) $a^{8} \div a^{p}=a^{2}$

Find the value of p.

$$
p=
$$

14 Calculate the circumference of a circle with radius 4.7 cm .

15 Without using a calculator, work out $2 \frac{1}{3} \times \frac{11}{14}$.
You must show all your working and give your answer as a mixed number in its simplest form.

A is the point $(-6,5)$ and B is the point $(-2,-3)$.
(a) Find the equation of the straight line, l, that passes through point A and point B. Give your answer in the form $y=m x+c$.

$$
\begin{equation*}
y= \tag{2}
\end{equation*}
$$

(b) Find the equation of the line that is perpendicular to l and passes through the origin.

17

NOT TO
SCALE

The diagram shows a rectangle $O P Q R$ with length 11 cm and width 4 cm .
$O Q$ is a diagonal and $O P X$ is a sector of a circle, centre O.
Calculate the percentage of the rectangle that is shaded.

18 Mrs Kohli buys a jacket, 2 shirts and a hat.
The jacket costs $\$ x$.
The shirts each cost $\$ 24$ less than the jacket and the hat costs $\$ 16$ less than the jacket.
Mrs Kohli spends exactly $\$ 100$.
Write down an equation in terms of x.
Solve this equation to find the cost of the jacket.
$19 y$ is inversely proportional to the square root of $(x+4)$. When $x=5, y=2$.

Find y when $x=77$.

$$
\begin{equation*}
y= \tag{3}
\end{equation*}
$$

20 Solve the simultaneous equations. You must show all your working.

$$
\begin{aligned}
3 x+y & =11 \\
x^{2}-2 y & =18
\end{aligned}
$$

$x=$

$$
y=.
$$

$$
x=.
$$

$$
\begin{equation*}
y= \tag{5}
\end{equation*}
$$

21

NOT TO
SCALE

The diagram shows an open rectangular box $A B C D E F G H$.
$A B=18.6 \mathrm{~cm}, B C=9 \mathrm{~cm}$ and $C G=14.5 \mathrm{~cm}$.
A straight stick $A G M$ rests against A and G and extends outside the box to M.
(a) Calculate the angle between the stick and the base of the box.
(b) $A M=30 \mathrm{~cm}$.

Show that $G M=4.8 \mathrm{~cm}$, correct to 1 decimal place.

The diagram shows a trapezium $O P Q R$.
O is the origin, $\overrightarrow{O R}=\mathbf{a}$ and $\overrightarrow{O P}=\mathbf{b}$.
$|\overrightarrow{R Q}|=\frac{3}{5}|\overrightarrow{O P}|$
(a) Find $\overrightarrow{P Q}$ in terms of \mathbf{a} and \mathbf{b} in its simplest form.

$$
\overrightarrow{P Q}=
$$

(b) When $P Q$ and $O R$ are extended, they intersect at W.

Find the position vector of W.

